Также в Ливерморской национальной лаборатории в Калифорнии проводится эксперимент под названием ADMX (сокращение от Axion Dark Mater Experiment – эксперимент по поиску аксиона и темной материи). Участники этого эксперимента основываются на предположении, что аксионы образуют невидимое гало Млечного Пути. Они используют сильное магнитное поле для конверсии аксионов в радиочастотные фотоны. Процесс усиливается с помощью резонансной полости, настраиваемой на частоты в диапазоне от 460 до 810 МГц, в соответствии с предсказываемой массой аксиона.
В 2007 году в немецкой ускорительной лаборатории DESY стартовал эксперимент «Поиск любой легкой частицы» (Any Light Particle Search, ALPS-I), завершенный в 2010 году. В настоящее время в DESY готовится гораздо более эффективный эксперимент ALPS-II, который, возможно, позволит обнаружить свидетельства существования слабовзаимодействующих легких частиц.
Но пока аксионы не удалось обнаружить. Считается, что рождение аксионов внутри звезды привело бы к ее ускоренному охлаждению. Также высказывались предположения, что один из возможных механизмов нагрева нашего Солнца – это излучение Солнцем аксионов или аксионоподобных частиц, которые превращаются в фотоны в областях с сильным магнитным полем. А аксионы, летящие от Солнца, в магнитном поле Земли могут превращаться в фотоны с энергией рентгеновского диапазона.
Однако ряд ученых пришел к выводу, что под влиянием сильного магнитного поля аксион может дезинтегрировать в фотон, а вот это способен определить детектор. В 1989 году в Брукхейвенской национальной лаборатории в Аптоне, штат Нью-Йорк, одной из 16 национальных лабораторий Министерства энергетики США, принялись за создание такого детектора. Фактически было построено два. Какое-то время один из них – медный цилиндр высотой до пояса среднего человека – выставлялся среди других аппаратов, которые показывают посетителям лаборатории. Но они не смогли обнаружить аксион. Правда, стоимость эксперимента составила от 1 до 2 % почти 60 млн фунтов стерлингов, которые ежегодно тратятся по всему миру на две-три дюжины экспериментов по поиску вимпов. Такие эксперименты идут постоянно.
Следующий кандидат – нейтрино, название которого происходит от итальянского слова, которое можно перевести как «нейтрончик», то есть маленький нейтрон. Это стабильная незаряженная элементарная частица с очень малой массой, долго считалось, что с нулевой. Нейтрино очень слабо взаимодействуют с любой материей. Нейтрино, в отличие от аксиона, не гипотетическая частица. Считается, что звезды, кроме света, излучают большой поток нейтрино, а на поздней стадии эволюции звезды за счет нейтрино уносится до 90 % излучаемой энергии.
Подробно про нейтрино я рассказывал в книге «Pro антиматерию»
В июне 2005 года было решено объединить самые крупные детекторы нейтрино на четырех континентах с целью впервые дать заблаговременный и, главное, достоверный прогноз вспышкам сверхновых в нашей галактике. Детекторы соединили в единую сеть, получившую название SNEWS (SuperNova Early Warning System – система раннего оповещения о сверхновых). Результаты круглосуточного мониторинга направляются на центральный компьютер, расположенный в Брукхейвенской национальной лаборатории в США.
К гипотетическим частицам относится нейтралино, являющаяся кандидатом на роль составляющей холодной темной материи. Напомню про суперсимметрию, предложенную рядом теоретиков: поскольку частицы бывают двух типов, бозоны и фермионы, которые соответственно могут или не могут занимать одно и то же квантовое пространство, между бозонами и фермионами должна существовать суперсимметрия.