Читаем Программирование игр и головоломок полностью

  i := i - 1; ЕСЛИ i = 0 ТО

  КОНЧЕНО КОНЕЦ_ЕСЛИ

  переставить (i, p)

ВЕРНУТЬСЯ

Вы покажете, что часть от 1 до р - 1 остается расположенной в неубывающем порядке. Но при выходе из цикла в p стоит элемент, который меньше всех остальных. Следовательно, нужно восстановить исходный порядок в части от 1 до p, если t не принимает значения ИСТИНА (в противном случае все кончено). Это вы легко изобретете.

Процедура О вдохновляется той же идеей, но есть два цикла:

— один, приводящий в p все элементы один за другим;

— другой, который приводит в p - 1 элементы, расположенные ниже того, который попал в p.

В конце каждого цикла нужно восстанавливать порядок. Эти восстановления порядка могут показаться дорогостоящими. Они стоят не меньше переписывания одной таблицы в другую со сравнением каждый раз по трем индексам, где добавляются перестановки таблицы в качестве формальных параметров процедуры. Здесь а — глобальная таблица.

Наконец, нужно заметить, что эта процедура прекрасно подходит для итеративного переписывания, Создаем вектор x, дающий искомое число для каждого p. Как и выше, индексы i и j процедур Па О связаны с p. Наконец, переменную p сделали глобальной. Мне кажется достаточно очевидным, что итеративная процедура не пойдет намного быстрее рекурсивной процедуры: придется делать много проверок, которые выполнялись автоматически на уровне машинного языка, исполняющей системой. Но это и есть способ выйти из положения в случае, если, к несчастью, у нас нет рекурсивности.

Если у вас есть предубеждения против рекурсии, то сейчас подходящий момент избавиться от них. И бросьте думать, что рекурсия всегда дорого обходится. Она всегда сокращает время программирования. Неверно, что она всегда приводит к более медленному вычислению (эта головоломка и есть пример). Я соглашусь с вами, что она всегда занимает немного больше места…

Эта процедура, действуя на 6 шашек

100 75 50 25 10 10,

быстро находит число 370, но терпит неудачу для 369.

<p>7. Обо всем понемногу</p>

Головоломка 29.

Эта задача также не должна была бы излагаться ошибающимися людьми. Я пытался понять, где эти программисты оступаются. Я считаю, что есть две опасности:

— прежде всего нет никакой уверенности в том, что поступающее число удастся эффективно разместить между двумя числами таблицы. Оно может оказаться перед первым элементом и после последнего элемента. Так как эта возможность влечет появление некоторых особенностей, то наши программисты начинают с изучения этих случаев, что совершенно ненужно;

— далее поиск должен происходить с помощью разделения каждый раз таблицы на две части. Сравниваем x со средним элементом. Если он больше, то нужно искать его место в верхней полутаблице. В противном случае он — в нижней половине. Но средний элемент — это элемент с индексом k = (1 + n)/2 или, в наиболее общем случае, где рассматривается кусок таблицы, начинающийся в p и кончающийся в q, — элемент с индексом (p + q)/2. Конечно, рассматривается только целая часть дроби. По этой причине некоторые программисты опасаются, что это может заставить обращаться много раз к одному и тому же элементу, и тогда программа не остановится или может вызвать потерю элемента.

Это — пустые опасения. Возьмем как общую следующую ситуацию: пусть мы смогли найти такие два целых p и q, что

a[p] x = a[q], причем p q.

Тогда все очевидным образом завершено, если q = p + 1.

В противном случае скачок между q и p не меньше 2, и так как p меньше q, то, следовательно, элемент с промежуточным номером

r = целая_часть ((p + q)/2)

обязательно отличается от элементов с номерами p и q, и вам нечего опасаться. Вы сравниваете x с элементом с индексом r и в зависимости от результата сравнения берете r либо как новую нижнюю границу p, либо новую верхнюю границу q.

Остается одна трудность. Как выбрать p и q, чтобы так пустить в ход процесс, чтобы выполнялось общее двойное неравенство? Всегда, когда приходится выполнять обращение к таблице, представляет интерес введение дополнительных элементов, освобождающих от влияния концов таблицы. Введем элемент с индексом 0, меньший, чем любой из тех x, к которым можно обратиться (мы отложим на более поздний срок решение вопроса, как мы можем сделать это эффективно), и элемент с номером n + 1, больший, чем все возможные x. Тогда x обязательно больше, чем a[0], и меньше, чем a[n + 1].

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT