Рассмотрите те прямые, которые проходят через точки p
c SG(p, 1) = 0. Нужно изучить прямые p − k, k, где меняется от 1, т. е. те, которые параллельны биссектрисе второго и четвертого координатного угла и проходят через точку p − 1, 1.Мы представили отрезок такой прямой для p
= 28 (см. рис. 38). Он пересекает точку с нулевым значением на вертикали 21 = 28 − 7. Значит, нужно ограничить число k шестью, задавая g = 3 при p = 28.Для p
= 34 диагональ, проходящая через 33, 1 проходит над всеми отрезками с 0 для p ≠ 0 и пройдет поэтому, пересекая ось q при q = 34. Поэтому нужно ограничить число k тридцатью тремя и, следовательно, взять g = 33 : 2 = 16.У вас есть также некоторое число таких pi
, что диагональ, выходящая из pi − 1, 1, не пересекает никакого отрезка нулей перед осью q, что дает gi = (pi − 1) : 2.Исходя отсюда, следующие числа p
определяются диагоналями, которые перерезают вертикальный отрезок, выходящий из pi так, что p − pi ≤ gi = (pi − 1) : 2. Тогда можно восстановить первоначальную последовательность, несущую нули, вплоть до (pi − 1) : 2.Теперь вы легко сможете доказать, что интересующая нас последовательность pi
есть последовательность чисел Фибоначчи.Составьте программу, перечисляющую pi
, gi.6. Комбинаторные задачи
Головоломка 20.
Полное решение.Поскольку эта задача всюду решена, предложим также и здесь решение: это избавит вас от поисков других решений; и, кроме того, я буду уверен, что вы посмотрели на все существенные места этой задачи. Есть книги, которые… Но это — совсем другая история.
Заметим сначала, что два ферзя не могут находиться на одной строке (горизонтали) и, поскольку нужно поставить 8 ферзей на 8 строк, то на каждой строке есть ферзь. Поэтому я буду говорить «ферзь k
» вместо «ферзь, стоящий на строке k».Точно также, есть только один ферзь в каждом столбце. Но совершенно ясно, что я не могу управлять в одно и то же время размещением и по строкам и по столбцам — собственно, это от меня в задаче и требуется. Я собираюсь поэтому размещать ферзей на последовательных строках, начиная сверху.
Чтобы начать, я помещаю ферзя в первый столбец на первой строке. Тогда мне остается решить меньшую задачу; разместить 7 ферзей на 7 последних строках шахматной доски, учитывая, что ферзь стоит на первом поле первой строки. Я получу тогда все решения с ферзем 1 в столбце 1. Затем я поставлю ферзя 1 в столбец 2 и разрешу задачу с 7 ферзями, и т. д. — 8 раз.
Обобщим. Мы собираемся решить частную, но нужную задачу: полагая, что уже есть ферзи, правильно размещенные на строках от 1 до k
− 1, и зная их положение, найти все возможные решения, размещая подходящим образом ферзей с номерами от k до 8. Обозначим программу, которая это делает, через HR(k)[24]. Стратегия очень проста:— мы пробегаем все поля на строке k
,— если поле свободно (т. е. не бьется уже поставленными ранее ферзями), то мы ставим на него ферзя k
и решаем ту же задачу для k + 1.При k
= 8 задача проще всего. Не может быть более одного свободного столбца. Если он есть, то мы ставим туда последнего ферзя и записываем полученное таким образом решение. Если свободного столбца нет, то нет и решения.Для задачи HR (k
) необходимо знание состояния игры, получающегося после размещения первых k − 1 ферзей. Это предполагает по крайней мере, что известны столбцы, занятые этими ферзями. Может быть, следовало бы сказать больше. Обозначим символически «занять k, i» операцию, которая констатирует факт, что в столбце i на строке k помещен ферзь.HR (k
= ДЛЯ i
:= 1 ДО 8 ВЫПОЛНЯТЬ ЕСЛИ место k
, i свободно ТО занять k
, iЕСЛИ k
= 8 ТО выписать решение ИНАЧЕ HR(к + 1)
КОНЕЦ_ЕСЛИ
освободить k
, i КОНЕЦ_ЕСЛИ
ВЕРНУТЬСЯ
Операция «освободить k
, i» отменяет то, что делает операция «занять k, i». Для решения задачи нужно изложить последовательность инициализации, отмечающую, что ничего не сделано и ни один ферзь в игре не участвует, а затем вызвать HR (1).Эта процедура рекурсивна, так как она обращается сама к себе. Тщательно изучите ее. Если вы исходите из гипотезы, что HR (k
+ 1) находит и выводит такие решения, у которых первые k ферзей стоят там, где они поставлены, то у вас не будет никаких затруднений в том, чтобы убедиться, что эта процедура совершенно правильна. Используйте крайние случаи: k = 8 и начальное обращение с k = 1.Если у вас в наличии нет никакого другого языка, кроме Бейсика, или если вы раб своего языка до такой степени, что не желаете учить что-нибудь, кроме Бейсика, то вам придется писать итеративное решение. Это сложнее.
Будем исходить из наиболее общей ситуации. Пусть на шахматной доске уже размещено k
− 1 ферзей. Обозначим это состояние буквой С (в смысле «самое общее состояние»). Это состояние раскладывается на три подсостояния:— уже размещено по местам 8 ферзей (k
− 1 = 8): состояние С8;— на строке с номером k
есть допустимое место для ферзя: состояние СОК;