Читаем Программирование игр и головоломок полностью

Я не вижу способа взяться за эту задачу, существенно отличного от предыдущего. Нужно найти нижнюю границу для числа ферзей. На пустой шахматной доске ферзь может блокировать 28 полей. Следовательно, нужно по крайней мере 3 ферзя, чтобы блокировать доску. Их нужно не больше 7: если вы уже пытались вручную поставить 8 ферзей, то вы должны были убедиться, что шахматная доска часто блокируется до того, как мы смогли поставить восьмого ферзя. Точно так же вероятно, что 6 ферзей должно хватить. Поэтому нужно исследовать отрезок от 3 до 6 ферзей.

Нет никакой уверенности в том, что эти ферзи не должны бить друг друга. Конечно, на шахматной доске есть поля, которые бьются по крайней мере двумя ферзями. Но нужно иметь возможность ограничить поиск решениями, для которых никакие два ферзя не бьют друг друга, или, может быть, немного проще — решениями, для которых никакие два ферзя не стоят на одной строке.

Вы размещаете k ферзей. Вы пробегаете шахматную доску в поисках свободного поля. Если его нет, то у вас есть решение. Если свободное поле есть, то вы ставите туда ферзя и начинаете поиск сначала. Бесполезно пробегать строки, на которых ферзь уже есть, Это соображение ускоряет проверку.

Головоломка 22.

Ничего трудного. Нужно перепробовать все комбинации, Берем какую-нибудь шашку домино в качестве начальной шашки цепочки и пробуем шашки одну за другой. Они вынимаются из хранилища, а затем отыскивается первая шашка, которую можно связать с данной, тем же способом, которым отыскивалось первое свободное поле на следующей строке.

Тщательно выберите ваше представление шашек домино.

Головоломка 23.

И на этот раз программирование достаточно просто. Вы задаете крайние члены последовательности:

a1 = 0, an = k.

С помощью уже проведенного рассуждения вы можете зафиксировать

a2 = 1, an−1 = k − 2.

Затем вы размещаете следующие члены в интервале (2, k − 3), например, уплотняя их к началу:

a3 = 2, a4 = 3, a5 = 4…

Вы образуете разности и, если они дают слишком много повторений (вы можете узнать его, не вычисляя всех разностей, что ускоряет тест), вы увеличиваете последний подвижный член an−2 и, когда добираетесь до конца, увеличиваете предпоследний подвижный член, затем берете an−2 = an−3 + 1 и продолжаете дальше.

Для последовательности с 5 членами есть только один подлежащий размещению член, и все идет очень быстро. Но сложность растет с ростом n очень круто. Если при 5 членах есть только один подлежащий размещению член, то с n = 6 их уже два и задача квадратична. Для произвольного n число подлежащих испытанию случаев имеет порядок nn−4.

Можно, наверное, и еще ускорить. Если даны пак (значение последнего члена), то известно максимальное число возможных повторений, и можно выбрать наилучшие исходные значения. Если есть право на r повторений, то можно брать не более r − 1 последовательных членов, начиная с a2, и, если они взяты как исходные значения, то права на повторение больше нет. Тем не менее эта задача расходует огромное количество машинного времени…

Головоломка 24.

В этой задаче я вас полностью предоставляю себе. Принцип все тот же. Но нужно как следует все организовать. Желаю успеха.

Головоломка 25.

Здесь, наоборот, помощь может оказаться далеко не лишней. Эта программа потребовала от меня массу времени. Кроме того, это поучительный случай, который я сохраняю в своих архивах как типичный пример для целого класса задач.

Среди информатиков есть два принципиально разных взгляда на программирование. Есть школа, приверженцы которой сначала проделывают всю математическую работу; они считают, что для того, чтобы написать хорошую программу, нужно сначала доказать некоторое свойство данных, а затем использовать его для получения результата. Сначала сделайте математику, а информатика придет позже. Таким образом, это способствует рассмотрению информатики как ветви математики.

Но есть и другой подход. Напишите сначала программу, пусть даже неэффективную. Затем понаблюдайте за ее поведением или постарайтесь прояснить ее действие. С помощью подходящих преобразований сделайте ее более результативной. Довольно часто я получаю таким образом весьма эффективные результаты, и я убежден, что в этом состоит новый метод создания алгоритмов. Но бывают упорно сопротивляющиеся случаи. Эта головоломка — один из них.

Начну со следующего замечания: речь идет о том, чтобы образовать все возможные перестановки и выбросить все те, которые не удовлетворяют условиям задачи.

Рассмотрим сначала случай 9 девушек. Обозначим их

а, б, в, г, д, е, ж, з, и.

Первая прогулка может быть выбрана произвольно. Возьмем:

а б в

г д е

ж з и

Беря в качестве строк столбцы этой таблицы первой прогулки, получаем вторую прогулку:

а г ж

б д з

в е и

Диагонали приводят к двум оставшимся прогулкам:

а д и   а е з

в г з   б г и

б е ж   в д ж

Все благополучно, Попробуем теперь 15.

Первая прогулка

а б в г д е ж з и к л м н о п

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ

Эта книга представляет собой перевод третьего издания американского бестселлера Effective C++ и является руководством по грамотному использованию языка C++. Она поможет сделать ваши программы более понятными, простыми в сопровождении и эффективными. Помимо материала, описывающего общую стратегию проектирования, книга включает в себя главы по программированию с применением шаблонов и по управлению ресурсами, а также множество советов, которые позволят усовершенствовать ваши программы и сделать работу более интересной и творческой. Книга также включает новый материал по принципам обработки исключений, паттернам проектирования и библиотечным средствам.Издание ориентировано на программистов, знакомых с основами C++ и имеющих навыки его практического применения.

Скотт Майерс , Скотт Мейерс

Программирование, программы, базы данных / Программирование / Книги по IT