Читаем Программирование игр и головоломок полностью

Потребуем, чтобы 9 было справа; следовательно, вычеркнем 9 из этой таблицы, оставив его только в столбце, соответствующей тому, что «в уме» 0. Цифра 3 требует 2 «в уме», чтобы дать 1. Вычеркнем остальные 3 в таблице. Цифра 9 не может быть получена иначе как с помощью 6 и 1 «в уме». Другие 6 вычеркиваем. Цифра 8 получается из 2 при 2 «в уме». Нужно взять 3 числа в первом столбце, так что нужно еще одно не равное ни 2, ни 3. Их нужно 4 в среднем столбце, так что нужно еще 3 числа, ре равных 6, которые нужно взять среди цифр 7, 4, 1, 8, 5. Два последних числа должны быть взяты из столбца с нулем «в уме». Когда эти числа среди всех возможных будут выбраны, останется расположить их в соответствии с тем, что должно быть для них «в уме». Эту программу сделать легко.

Головоломка 12.

Если число a1a2ap (представленное как последовательность цифр) кратно 3, то и a1 + а2 + … + ap кратно 3. Сумма кубов цифр равна

a13 + а23 + … + ap3.

Нужно показать, что это число также кратно 3. Действуйте по индукции по числу слагаемых. Предположим, что для p = n − 1 членов

a13 + а23 + … + ap3 = (a1 + … + ap)3 по модулю 3; тогда равенство

(a1 + … + ap + an)3 = (a1 + … + ap)3 + an3 + 3 (…)

доказывает наше утверждение для n слагаемых.

Возьмите число с k цифрами. Сумма кубов его цифр ограничена величиной k*93. Но исходное число не может быть меньше, чем 10k−1. Следовательно, достаточно, чтобы 10k−1 было больше, чем k*729, что очевидным образом выполняется при k = 5. Но эта оценка слишком пессимистична.

Головоломка 14.

Число, полученное при обращении порядка цифр, равно

1000d + 100c + 10b + a,

и разность этих двух чисел равна

999 (ad) + 90 (bc).

Числа a, b, c, d были расположены в невозрастающем порядке, и они не все равны между собой, так что a строго больше d и ad не равно нулю. Все остальное просто.

Головоломка 16.

Единственное, что до сих пор еще не сказано — это способ определять, становится» ли последовательность периодической. Метод Полларда был основан на первой стратегии. Мы выясняем, существует ли ai с a2i = ai. Но вычисление f(x) = x2 − 1 по модулю n — дорогое вычисление. Брепт улучшил этот метод, предложив использовать вторую стратегию.

Головоломка 17.

Эта программа основана на следующих результатах:

если b нечетно, n четно, то n делится на b тогда и только тогда, когда n/2 делится на b;

нечетное n делится на b тогда и только тогда, когда nb делится на b. Но nb четно.

Для n = 277 − 3 и b = 7 вы получаете:

Число n нечетно. Рассматриваем nb = 277 − 10. Оно делится на 2: получаем 276 − 5.

Это число нечетно: (276 − 5) − 7 = 276 − 12.

Делим на 4: 274 — 3.

Получаем ту же самую задачу, в которой показатель уменьшен на 3. Так как 77 = 3*25 + 2, то мы таким образом доходим до 22 — 3 = 1, которое не делится на 3. Вряд ли вас слишком утомит доказательство того, что 2n − 3 никогда не делится на 7…

Головоломка 18.

Я не в состоянии рассказать вам, как я получил эту программу, это — очень долгая история, связанная с разложением целых чисел на множители. Может быть, когда-нибудь я ее и опубликую. Следовательно, будем разбираться в том, что нам дано — в тексте программы.

Начнем с нечетного n. В соответствии с инициализацией программы n = 4p − 1, где p четно. В противном случае уже последует ответ «НЕТ». Следовательно, рассмотрите нечетное n, являющееся полным квадратом и, следовательно, квадратом нечетного числа 2k + 1;

(2k + 1)2 = 4k2 + 4k + 1 = 4k (k + 1) + 1.

Так как k (k + 1) — произведение двух последовательных целых чисел, и из двух последовательных целых чисел всегда есть хотя бы одно четное число, получаем простой, но интересный результат: любой квадрат нечетного числа сравним с 1 по модулю 8. Таким-образом, при n отличном от 1 по модулю 8 инициализирующая часть программы выводит, что n не является точным квадратом.

Посмотрим теперь, что происходит внутри цикла. Делим p на 2, и если результат четен, мы удовлетворяемся тем, что умножаем a на 2. При этом действии произведение a*p остается постоянным. Поэтому кажется вероятным, что в цикле существует инвариантная величина, запись которой содержит a*p в предположении, что p четно.

Если после деления p на 2 результат оказывается нечетным, то мы вычитаем из этого результата a/2 + b. Обозначим новые значения a, b, p через а', b', p' соответственно:

а' = 2*а, p' = p/2 − а/2 − b, b' = a + b.

Для этих значений получаем:

a'*p' = a*pa2 − 2a*b = а*р − (а + b)2 + b2 = а*рb'2 + b2.

Это, наконец, дает

а'*p' + b'2 = а*р + b2.

Инвариантной величиной цикла оказывается, таким образом, сумма ар + b2, причем p остается четным. Это обеспечивается тем, что в случаях, когда p/2 нечетно, мы вычитаем нечетные b из нечетного p/2. Что касается b, то он нечетен потому, что он начинается со значения 1 и к нему прибавляются только четные значения а.

В начале а = 4, p (целая часть дроби (n − 1)/4) четно, b = 1, так что ар + b2 = n.

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ

Эта книга представляет собой перевод третьего издания американского бестселлера Effective C++ и является руководством по грамотному использованию языка C++. Она поможет сделать ваши программы более понятными, простыми в сопровождении и эффективными. Помимо материала, описывающего общую стратегию проектирования, книга включает в себя главы по программированию с применением шаблонов и по управлению ресурсами, а также множество советов, которые позволят усовершенствовать ваши программы и сделать работу более интересной и творческой. Книга также включает новый материал по принципам обработки исключений, паттернам проектирования и библиотечным средствам.Издание ориентировано на программистов, знакомых с основами C++ и имеющих навыки его практического применения.

Скотт Майерс , Скотт Мейерс

Программирование, программы, базы данных / Программирование / Книги по IT