Читаем Программирование на языке Пролог полностью

Мы лишь затронули вопрос о возможных способах организации поиска по графу. Сведения о том, как осуществлять поиск по графу с использованием более эффективных критериев, чем «первый лучший», можно найти в литературе по искусственному интеллекту. Например: Nilsson N. Principles of Artificial Intelligence, Springer-Verlag, 1982[10] и Winstone P. Artificial Intelligence, (second edition), Addison-Wesley, 1984.[11]

<p><strong>7.10. Просеивай Двойки, Просеивай Тройки</strong></p>Просеивай Двойки, Просеивай Тройки, Эратосфена Решето, Пусть все кратные им отсеем, Простые числа получим зато. Аноним

Простое число – это целое положительное число, которое делится нацело только на 1 и на само себя. Например, число 5 – простое, а число 15 – нет, поскольку оно делится на 3. Один из методов построения простых чисел называется «решетом Эратосфена». Этот метод, «отсеивающий» простые числа, не превышающие N, работает следующим образом:

1. Поместить все числа от 2 до N в решето.

2. Выбрать и удалить из решета наименьшее число.

3. Включить это число в список простых.

4. Просеять через решето (удалить) все числа, кратные этому числу.

5. Если решето не пусто, то повторить шаги 2-5.

Чтобы перевести эти правила на Пролог, мы определим предикат целые для получения списка целых чисел, предикат отсеять для проверки каждого элемента решета и предикат удалить для создания нового содержимого решета путем удаления из старого всех чисел, кратных выбранному числу. Это новое содержимое опять передается предикату отсеять. Предикат простые - это предикат самого верхнего уровня, такой что простые(N, L) конкретизирует L списком простых чисел, заключенных в диапазоне от 1 до N включительно.

простые(Предел,Рs):- целые(2,Предел,Is),отсеять(Is,Рs).

целые (Min,Max,[Min|Oct]):-Min=‹Max,!, М is Min+1,целые(М,Мах,Ост).

целые(_,_,[]).

отсеять([],[]).

отсеять([I|Is],[I|Ps]):-удалить(I,Is,Нов),отсеять(Нов,Рs).

удалить(Р,[],[]).

удалить (P,[I|Is],[I|Nis]):-not(0 is I mod Р),!,удалить(Р,Is,Nis).

удалить (P,[I|Is],Nis):-0 is I mod Р,!,удалить(Р,Is,Nis).

Продолжая эту арифметическую тему, рассмотрим Пролог-программу, реализующую рекурсивную формулировку алгоритма Евклида для нахождения наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК) двух чисел. Целевое утверждение нод(I,J,K) доказуемо, если K является наибольшим общим делителем чисел I и J. Целевое утверждение нок(I,J,K) доказуемо, если K является наименьшим общим кратным чисел I и J:

нод(I,0,I).

нод(I,J,K):- R is I mod J, нод(J,R,K).

нок(I,J,K):- нод(I,J,R), K is (I*J)/R.

Заметим, что из-за особенностей способа вычисления остатка эти предикаты не являются «обратимыми». Это означает, что для того чтобы они работали, необходимо заблаговременно конкретизировать переменные I и J.

Упражнение 7.10. Если числа X, Y и Z таковы, что квадрат Z равен сумме квадратов X и Y (т. е. если Z²=X²+Y²), то про такие числа говорят, что они образуют Пифагорову тройку. Напишите программу, порождающую Пифагоровы тройки. Определите предикат pythag такой что, задав вопрос

?- pythag(X,Y,Z).

и запрашивая альтернативные решения, мы получим столько разных Пифагоровых троек, сколько пожелаем. Подсказка: используйте предикаты, подобные целое_число из гл. 4.

<p><strong>7.11. Символьное дифференцирование</strong></p>

Символьным дифференцированием в математике называется операция преобразования одного арифметического выражения в другое арифметическое выражение, которое называется производной. Пусть U обозначает арифметическое выражение, которое может содержать переменную х. Производная от U по х записывается в виде dU/dx и определяется рекурсивно с помощью некоторых правил преобразования, применяемых к U. Вначале следуют два граничных условия. Стрелка означает «преобразуется в»; U и V обозначают выражения, а с – константу:

dc/dx → 0

dx/dx → 1

d(-U)/dx → -(dU/dx)

d(U+V)/dx → dU/dx+dV/dx

d(U-V)/dx → dU/dx-dV/dx

d(cU)/dx → c(dU/dx)

d(UV)/dx → U(dV/dx) + V(dU/dx)

d(U/V)dx → d(UV-1)/dx

d(Uc)/dx → cUc-l(dU/dx)

d(lnU)/dx → U-1(dU/dx)

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже