Читаем Программирование. Принципы и практика использования C++ Исправленное издание полностью

int val = rand()%max;

Долгое время такой код считался совершенно неудовлетворительным, поскольку он просто отбрасывает младшие разряды случайного числа, а они, как правило, не обладают свойствами, которыми должны обладать числа, генерируемые традиционными датчиками случайных чисел. Однако в настоящее время во многих операционных системах эта проблема решена достаточно успешно, но для обеспечения переносимости своих программ мы рекомендуем все же скрывать вычисления случайных чисел в функциях.

int randint(int max) { return rand()%max; }

int randint(int min, int max) { return randint(max–min)+min; }

  Таким образом, мы можем скрыть определение функции randint(), если окажется, что реализация функции rand() является неудовлетворительной. В промышленных программных системах, а также в приложениях, где требуются неравномерные распределения, обычно используются качественные и широко доступные библиотеки случайных чисел, например Boost::random. Для того чтобы получить представление о качестве вашего датчика случайных чисел, выполните упр. 10.

<p id="AutBody_Root477"><strong>24.8. Стандартные математические функции</strong></p>

В стандартной библиотеке есть стандартные математические функции (cos, sin, log и т.д.). Их объявления можно найти в заголовке .

Стандартные математические функции могут иметь аргументы типов float, double, long double и complex (раздел 24.9). Эти функции очень полезны при вычислениях с плавающей точкой. Более подробная информация содержится в широко доступной документации, а для начала можно обратиться к документации, размещенной в веб.

  Если стандартная математическая функция не может дать корректного результата, она устанавливает флажок errno. Рассмотрим пример.

errno = 0;

double s2 = sqrt(–1);

if (errno) cerr << "Что-то где-то пошло не так, как надо";

if (errno == EDOM) // ошибка из-за выхода аргумента

                   // за пределы области определения

  cerr << " фунция sqrt() для отрицательных аргументов не определена.";

pow(very_large,2); // плохая идея

if (errno==ERANGE) // ошибка из-за выхода за пределы допустимого

                   // диапазона

  cerr << "pow(" << very_large

       << ",2) слишком большое число для double";

Если вы выполняете серьезные математические вычисления, то всегда должны проверять значение errno, чтобы убедиться, что после возвращения результата оно по-прежнему равно 0. Если нет, то что-то пошло не так, как надо. Для того чтобы узнать, какие математические функции могут устанавливать флажок errno и чему он может быть равен, обратитесь к документации.

  Как показано в примере, ненулевое значение флажка errno просто означает, что что-то пошло не так. Функции, не входящие в стандартную библиотеку, довольно часто также устанавливают флажок errno при выявлении ошибок, поэтому следует точнее анализировать разные значения переменной errno, чтобы понять, что именно случилось. В данном примере до вызова стандартной библиотечной функции переменная errno была равна нулю, а проверка значения errno сразу после выполнения функции может обнаружить, например, константы EDOM и ERANGE. Константа EDOM означает ошибку, возникшую из-за выхода аргумента за пределы области определения функции (domain error). Константа ERANGE означает выход за пределы допустимого диапазона значений (range error).

Обработка ошибок с помощью переменной errno носит довольно примитивный характер. Она уходит корнями в первую версию (выпуска 1975 года) математических функций языка C. 

<p id="AutBody_Root478"><strong>24.9. Комплексные числа</strong></p>

Комплексные числа широко используются в научных и инженерных вычислениях. Мы полагаем, что раз они вам необходимы, значит, вам известны их математические свойства, поэтому просто покажем, как комплексные числа выражаются в стандартной библиотеке языка С++. Объявление комплексных чисел и связанных с ними математических функций находятся в заголовке .

template class complex {

  // комплексное число — это пара скалярных величин,

  // по существу, пара координат

  Scalar re, im;

public:

  complex(const Scalar & r, const Scalar & i) :re(r), im(i) { }

  complex(const Scalar & r) :re(r),im(Scalar ()) { }

  complex() :re(Scalar ()), im(Scalar ()) { }

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных