Читаем Программируем Arduino. Профессиональная работа со скетчами полностью

Протокол последовательного интерфейса и большая часть терминологии появились еще на заре развития компьютерных сетей. Отправитель и получатель должны были договориться о скорости обмена данными. Эта скорость, измеряемая в бодах, устанавливалась на обоих концах соединения перед началом обмена. Скорость в бодах определяет частоту переходов между уровнями сигнала. Она совпадала бы с количеством бит в секунду, если бы байт данных имел стартовый бит, стоповый бит и бит четности. То есть, чтобы получить грубую оценку скорости передачи в байтах в секунду, нужно скорость в бодах разделить на 10.

Скорость в бодах выбиралась из числа предопределенных стандартом значений. Увидеть эти значения можно в раскрывающемся списке в окне монитора последовательного порта. Программное обеспечение Arduino поддерживает следующие скорости: 300, 1200, 4800, 9600, 14 400, 19 200, 28 800, 38 400, 57 600 и 115 200 бод.

Чаще всего для связи с Arduino используется скорость 9600 бод, которая выбирается по умолчанию. Этот выбор не обусловлен какими-то серьезными причинами, так как связь с платами Arduino действует вполне надежно даже на скорости 115 200 бод. Эту скорость можно использовать в проектах, где требуется высокая скорость передачи. Также часто используется скорость 2400 бод. Некоторые периферийные устройства, такие как адаптеры Bluetooth и аппаратура GPS, работают на этой скорости.

Другой довольно запутанный параметр настройки последовательного интерфейса, который может вам встретиться, — это строка вида 8N1. В данном случае она означает: размер пакета 8 бит, отсутствие контроля четности и 1 стоповый бит. Несмотря на возможность других комбинаций, практически все устройства, которые вам попадутся, будут использовать параметр 8N1.


Команды последовательного порта

Команды последовательного порта включены в стандартную библиотеку Arduino, поэтому нет необходимости использовать в скетчах команду include.

Запуск взаимодействий по последовательному порту осуществляется командой Serial.begin, которая принимает параметр со скоростью в бодах:

Serial.begin(9600);

Обычно она вызывается только один раз, в функции setup.

Если используется плата, имеющая несколько последовательных портов, и вы собираетесь организовать обмен через порт по умолчанию (порт 0), достаточно вызвать простую команду Serial.begin. Но для других портов нужно указать в команде номер порта после слова Serial. Например, чтобы запустить взаимодействия по последовательному порту 3 на плате Arduino Due, скетч должен выполнить следующую команду:

Serial3.begin(9600);

После вызова команды Serial.begin приемопередатчик УАПП переходит в режим приема входящих данных и автоматически сохраняет их в буфере, поэтому, даже если процессор занят в это время чем-то другим, данные не будут теряться, пока буфер не переполнится.

Функция loop может проверить наличие входящих данных с помощью функции Serial.available. Она возвращает число байтов, доступных для чтения. Если в буфере нет ни одного байта, она вернет 0. В языке C это равносильно значению false, поэтому часто можно видеть такой код, проверяющий доступность данных:

void loop()

{

  if (Serial.available())

  {

    // прочитать и обработать следующий байт

  }

}

Команда read не имеет параметров и просто читает следующий доступный байт из буфера. Функция readBytes читает доступные байты в буфер, организованный внутри скетча. Она принимает два аргумента: буфер (это должна быть ссылка на массив байтов) и максимальное число байтов для чтения. Эта команда может пригодиться в проектах для пересылки в плату Arduino строк переменной длины. Но вообще лучше избегать этого и стараться осуществлять обмен максимально простыми данными фиксированного размера.

Также могут пригодиться функции parseInt и parseFloat, позволяющие сохранять строки, пересылаемые в плату Arduino, как числа в переменных типа int и float соответственно.

void loop()

{

  if (Serial.available())

  {

    int x = parseInt();

  }

}

Обе функции читают символы, пока не достигнут конца строки или не встретят пробел или другой нецифровой символ, и затем преобразуют прочитанную последовательность цифр в числовое значение.

Перед использованием функций, таких как parseInt и parseFloat, убедитесь, что понимаете, зачем вы это делаете. Мне приходилось видеть код, написанный другими, который преобразовывал значение int в массив символов и посылал его второй плате Arduino, которая преобразовывала массив обратно в значение int. Такое решение нельзя назвать удачным по следующим причинам.

• В этом нет необходимости. Двоичные данные передаются через последовательный интерфейс ничуть не хуже. Достаточно просто передать старший и младший байты значения int и затем собрать их обратно в значение int на стороне получателя.

• Преобразование чисел в строки и обратно выполняется медленно.

• Вместо шести символов (включая завершающий нулевой символ) по линии связи можно передать всего два байта, составляющие значение int.

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных