int raw = analogRead(sensePin);
float volts = raw / 205.0;
float tempC = 100.0 * volts — 50;
Но в действительности температура в виде вещественного числа нужна только тогда, когда требуется отобразить ее на экране. Другие операции с температурой, такие как сравнение или усреднение при нескольких попытках чтения, вполне можно выполнять с непреобразованным значением типа int, и при этом они будут выполняться значительно быстрее.
Поиск против вычисления
Как вы уже поняли, в скетчах вещественных чисел лучше избегать. Но как быть, если понадобится сгенерировать на аналоговом выходе сигнал синусоидальной формы, для чего, как можно догадаться, потребуется вычислять
Следующий пример генерирует синусоиду, разбивая каждый цикл на 64 шага, и выводит сигнал на аналоговый выход DAC0 платы Arduino Due. Имейте в виду, что для данного эксперимента годятся только платы Arduino с истинными аналоговыми выходами, такие как Due.
// sketch_-4_03_sin
void setup()
{
}
float angle = 0.0;
float angleStep = PI / 32.0;
void loop()
{
int x = (int)(sin(angle) * 127) + 127;
analogWrite(DAC0, x);
angle += angleStep;
if (angle > 2 * PI)
{
angle = 0.0;
}
}
Измерение на выходе показывает, что данный скетч действительно производит сигнал замечательной синусоидальной формы, но с частотой всего 310 Гц. Процессор на плате Arduino Due работает с тактовой частотой 80 МГц, поэтому можно было бы ожидать увидеть сигнал с большей частотой. Проблема в том, что здесь скетч снова и снова повторяет одни и те же вычисления. Но поскольку каждый раз получаются одни и те же результаты, почему бы просто не рассчитать их все сразу и не сохранить в массиве?
Следующий пример также генерирует синусоиду, разбивая цикл на 64 шага, но использует прием поиска по таблице заранее подготовленных значений, которые выводит непосредственно в цифроаналоговый преобразователь (ЦАП).
byte sin64[] = {127, 139, 151, 163, 175, 186, 197,
207, 216, 225, 232, 239, 244, 248, 251, 253, 254,
253, 251, 248, 244, 239, 232, 225, 216, 207, 197, 186,
175, 163, 151, 139, 126, 114, 102, 90, 78, 67, 56, 46,
37, 28, 21, 14, 9, 5, 2, 0, 0, 0, 2, 5, 9, 14, 21, 28,
37, 46, 56, 67, 78, 90, 102, 114, 126};
void setup()
{
}
void loop()
{
for (byte i = 0; i < 64; i++)
{
analogWrite(DAC0, sin64[i]);
}
}
Этот пример генерирует точно такой же сигнал в форме синусоиды, но уже с частотой 4,38 кГц, то есть работает более чем в 14 раз быстрее.
Таблицу синусов можно рассчитать разными способами. Можно сгенерировать числа по обычной формуле в электронной таблице или написать скетч, который будет выводить числа в монитор последовательного порта, откуда их можно скопировать и вставить в другой скетч. Далее приводится версия скетча sketch_04_03_sin, которая выводит значения один раз в монитор последовательного порта:
// sketch_-4_05_sin_print
float angle = 0.0;
float angleStep = PI / 32.0;
void setup()
{
Serial.begin(9600);
Serial.print("byte sin64[] = {");
while (angle < 2 * PI)
{
int x = (int)(sin(angle) * 127) + 127;
Serial.print(x);
angle += angleStep;
if (angle < 2 * PI)
{
Serial.print(", ");
}
}
Serial.println("};");
}
void loop()
{
}
Открыв окно монитора порта, вы увидите сгенерированную последовательность чисел (рис. 4.1).
Рис. 4.1. Использование скетча для получения массива чисел
Быстрый ввод/вывод
В этом разделе мы посмотрим, как увеличить скорость включения и выключения цифровых выходов. Мы увеличим максимальную частоту с 73 кГц почти до 4 МГц.
Простая оптимизация кода
Начнем с простого кода, включающего и выключающего цифровой выход с помощью digitalWrite: