Читаем Программируя Вселенную. Квантовый компьютер и будущее науки полностью

Второму закону термодинамики почти полторы сотни лет, но он до сих пор остается предметом научных споров. Почти никто не сомневается в его истинности, но есть самые разные мнения о том, почему он справедлив. Гипотеза о вычислительной природе Вселенной может снять по крайней мере часть этих споров. Второе начало термодинамики, если понять его должным образом, основано на взаимодействии между «видимой информацией» о состоянии вещества – той, к которой у нас есть доступ, и «невидимой информацией» – битами энтропии, которые ничуть не менее физические и которые хранятся атомами, формирующими это вещество.

Истоки вычислительной модели

В программу моего обучения в Гарварде входило «Общее образование». На практике это означало, что если я способен объяснить, для чего мне нужен тот или иной курс, то могу его посещать. Поэтому, заручившись благословением – или, во всяком случае, подписью – своего научного руководителя, Нобелевского лауреата Шелдона Глэшоу, я составил для себя программу сам. Ее основными элементами были лекции Роберта Фитцджеральда о просодии и Гомере, Вергилии и Данте, а также лекции Леона Кирхнера о камерной музыке и семинар Бернарда Коэна «Влияние физики на общество». Глэшоу также настоял на том, чтобы я прослушал немного лекций по физике.

Я выбрал два курса, с которых начался мой путь к вычислительной модели Вселенной. Первым был курс Майкла Тинкэма по статистической механике, замечательный синтез квантовой механики (физики атомов и молекул) и термодинамики (тепло и работа). Как наука статистическая механика возникла в последние годы XIX в. и привела к созданию лазеров, электрических лампочек, транзисторов и многих других изобретений. Основная идея курса Тинкэма состояла в том, что термодинамическая величина, известная как энтропия и представляющая собой меру тепловой энергии, которая не может быть превращена в механическую энергию в замкнутой термодинамической системе, может также восприниматься как мера информации.

Понятие энтропии (от древнегреческого «в превращении») впервые ввел Рудольф Клаузиус в 1865 г. Тогда она представлялась таинственной термодинамической величиной, которая ограничивает мощность паровых двигателей. Тепло – это много энтропии. Механизмы, работающие на основе тепловой энергии, например паровые двигатели, должны что-то делать с этой энтропией; как правило, они избавляются от нее посредством выхлопа. Они не могут превратить всю тепловую энергию в полезную работу. Клаузиус же отметил, что энтропия имеет тенденцию увеличиваться.

В конце XIX в. основатели статистической механики, Максвелл, Больцман и Гиббс, поняли, что энтропия – это еще и форма информации. Энтропия – мера количества битов недоступной информации, содержащейся в атомах и молекулах, из которых состоит мир. Тут-то и появилось второе начало термодинамики, которое объединило это наблюдение с тем фактом, что законы физики, как мы скоро увидим, сохраняют информацию. Природа не разрушает биты.

Да, но ведь нужно бесконечное число битов энтропии, чтобы точно определить положение и скорость даже одного-единственного атома, возразили мои одногруппники. Это не так, ответил Тинкэм. Законы квантовой механики, управляющие поведением физических систем на микроскопическом уровне, гарантируют, что атомы и молекулы хранят лишь конечное количество информации.

Черт побери! Это было очень увлекательно, хотя я еще не все понимал. Хорошо, все физические системы можно описать с точки зрения информации. Максвелл, Больцман и Гиббс выяснили это за пятьдесят лет до того, как было изобретено слово «бит»! Тогда причем же здесь квантовая механика? Мне стало любопытно, и я записался на вводный курс квантовой механики Нормана Рэмзи. Он – один из самых опытных специалистов по квантово-механическому «массажу» в мире. Рэмзи разработал многие из методов, с помощью которых можно убедить атомы и молекулы отдавать нам свою энергию и раскрывать свои тайны. Кстати, эти методы принесли ему Нобелевскую премию.

Но то, что казалось Рэмзи простым, для меня оставалось неясным. Например, как это возможно, что электрон может быть в двух местах одновременно? На основании детальных экспериментальных данных Рэмзи показывал нам, что электрон не только может находиться во многих местах одновременно, но и должен там быть (там, и там, и там тоже). Возможно, в ранний час, в аудитории, освещенной только тусклым светом проектора, я впадал в некое трансовое состояние – но все равно не понимал сути квантовой механики. Я вышел из этого транса лишь несколько лет спустя, когда стал работать вместе с Рэмзи в Институте Лауэ-Ланжевена в Гренобле, Франция, над экспериментом по измерению поляризации электрического заряда в нейтроне.

Перейти на страницу:

Похожие книги

Пока ваш подросток не свёл вас с ума
Пока ваш подросток не свёл вас с ума

«Пока ваш подросток не свёл вас с ума» — новая книга о воспитании детей знаменитого психолога Найджела Латты. Автор расскажет вам о том, как выжить в семье с подростком и остаться при этом в здравом уме. Он подскажет вам, что делать, когда вы уже просто на грани отчаяния. Эта книга — как визит на дом первоклассного психотерапевта. Неважно, в чём заключается проблема, — стратегии, описанные в этой книге, помогут вам понять, что происходит с вашими детьми и чем вы можете им помочь. Найджел Латта — психолог с 20-летним стажем, отец двоих сыновей и признанный специалист по «безнадёжным» случаям. Читайте Найджела Латту, и ваш случай не будет безнадёжным!

Найджел Латта

Педагогика, воспитание детей, литература для родителей / Педагогика / Психология / Психотерапия и консультирование / Образование и наука