Читаем Программист-прагматик полностью

Если бы эта зависимость всегда была линейной (т. е. время возрастало бы прямо пропорционально значению n), то этот раздел можно было бы и пропустить. Однако наиболее важные алгоритмы не являются линейными. Хорошая новость: многие алгоритмы являются сублинейными. Например, в алгоритме двоичного поиска при нахождении соответствия вовсе не обязательно рассматривать подряд всех кандидатов. А теперь плохая новость: другие алгоритмы отличаются существенно худшими линейными свойствами; время их выполнения или требования к объему памяти возрастают намного быстрее, чем значение n. Если для обработки десяти элементов алгоритму требуется минута, то для обработки ста элементов потребуется целая жизнь.

При написании любых программ, содержащих циклы или рекурсивные вызовы, мы подсознательно проверяем требования, предъявляемые ко времени выполнения и объему памяти. Это редко является формальным процессом, скорее, оперативным подтверждением наличия здравого смысла в том, что мы делаем в определенных обстоятельствах. Но иногда мы оказываемся в ситуации, когда нам приходится проводить более детальный анализ. В этом случае весьма полезной оказывается система обозначений «O()» («O-большое»).

Система обозначений О()

Система O() представляет собой математический способ обозначения приближений. Если мы указываем, что некая программа осуществляет сортировку n записей за время O(n^2), то это просто означает, что максимальное время выполнения программы будет изменяться пропорционально n^2. При удвоении числа записей время возрастет примерно в четыре раза. O() можно рассматривать как порядок величины. Система обозначений O() определяет верхнюю границу величины измеряемого параметра (время, объем памяти, и т. д.). Если мы говорим, что некая функция занимает время O(n^2), то под этим понимается, что верхняя граница интервала времени, необходимого для ее выполнения, возрастает не быстрее n^2. Иногда мы встречаемся с довольно сложными функциями O(), и поскольку именно член высшего порядка будет определять значение с ростом n, то обычно все члены низшего порядка удаляются, чтобы не мешать постоянным коэффициентам умножения. O(n^2/2+Зn) означает то же самое, что и O(n^2/2), которое, в свою очередь, является эквивалентом O(n^2). В этом и состоит недостаток системы обозначений O() – один алгоритм O(n^2) может быть быстрее другого алгоритма O(n^2) в тысячу раз, но из обозначений вы этого не поймете.

На рисунке 6.1 показано несколько общих обозначений O(), с которым вы можете встретиться, и график, на котором сравнивается время выполнения алгоритмов в каждой категории. Из него ясно, что все начинает быстро выходить из-под контроля, как только мы переходим через O(n^2).


Рис. 6.1. Время выполнения различных алгоритмов


Некоторые универсальные обозначения О-большое

O(1) Постоянная зависимость (обращение к элементу массива, простые операторы)

O(lg(n)) Логарифмическая зависимость (двоичный поиск) [lg(n) – краткое обозначение log2(n)]

O(n) Линейная зависимость (последовательный поиск)

O(n lg(n)) Эта зависимость линейной, но не намного (среднее время быстрой сортировки, пирамидальной сортировки)

O(n^2) Квадратичная зависимость (выборочная сортировка и сортировка включения)

O(n^3) Кубическая зависимость (перемножение двух матриц размером n*n)

O(C^n) Экспоненциальная зависимость (задача о коммивояжере, разбиение набора)


Предположим, что у вас есть программа, обрабатывающая 100 записей за 1 сек. Сколько времени ей потребуется для обработки 1000 записей? Если ваша программа является O(1), то это время остается равным 1 сек. Если она является O(lg(n)), то для обработки потребуется около 3 сек. При O(n) время обработки линейно возрастает до 10 сек., а при O(nlg(n)) составит примерно 33 сек. Если вам не повезло и ваша программа является O(n^2), то можете отдохнуть в течение 100 сек., пока она не сделает свое дело. Ну а в том случае, если вы используете экспоненциальный алгоритм O(2^n), можете заварить чашечку кофе – программа завершит свою работу примерно через 10263 года. В общем, хотелось бы знать, как происходит конец света.

Система обозначений O() не применяется только к временным параметрам; ее можно использовать для представления других ресурсов, требуемых неким алгоритмом. Например, она часто является полезной при моделировании расхода памяти (см. упражнение 35).

Оценка с точки зрения здравого смысла

Можно оценить порядок многих базовых алгоритмов с точки зрения здравого смысла.

• Простые циклы. Если простой цикл выполняется от 1 до n, то алгоритм, скорее всего, является O(n) – время находится в линейной зависимости от n. Примерами этого являются исчерпывающий поиск, поиск максимального элемента в массиве и генерация контрольной суммы.

Перейти на страницу:

Все книги серии Библиотека программиста

Программист-фанатик
Программист-фанатик

В этой книге вы не найдете описания конкретных технологий, алгоритмов и языков программирования — ценность ее не в этом. Она представляет собой сборник практических советов и рекомендаций, касающихся ситуаций, с которыми порой сталкивается любой разработчик: отсутствие мотивации, выбор приоритетов, психология программирования, отношения с руководством и коллегами и многие другие. Подобные знания обычно приходят лишь в результате многолетнего опыта реальной работы. По большому счету перед вами — ярко и увлекательно написанное руководство, которое поможет быстро сделать карьеру в индустрии разработки ПО любому, кто поставил себе такую цель. Конечно, опытные программисты могут найти некоторые идеи автора достаточно очевидными, но и для таких найдутся темы, которые позволят пересмотреть устоявшиеся взгляды и выйти на новый уровень мастерства. Для тех же, кто только в самом начале своего пути как разработчика, чтение данной книги, несомненно, откроет широчайшие перспективы. Издательство выражает благодарность Шувалову А. В. и Курышеву А. И. за помощь в работе над книгой.

Чед Фаулер

Программирование, программы, базы данных / Программирование / Книги по IT

Похожие книги

1С: Бухгалтерия 8 с нуля
1С: Бухгалтерия 8 с нуля

Книга содержит полное описание приемов и методов работы с программой 1С:Бухгалтерия 8. Рассматривается автоматизация всех основных участков бухгалтерии: учет наличных и безналичных денежных средств, основных средств и НМА, прихода и расхода товарно-материальных ценностей, зарплаты, производства. Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, проводить их по учету, формировать разнообразные отчеты, выводить данные на печать, настраивать программу и использовать ее сервисные функции. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов.Для широкого круга пользователей.

Алексей Анатольевич Гладкий

Программирование, программы, базы данных / Программное обеспечение / Бухучет и аудит / Финансы и бизнес / Книги по IT / Словари и Энциклопедии
C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных