Читаем Происхождение мозга полностью

Следовательно, энергетические затраты в нервной системе следует разделять на постоянные и временные. К постоянным следует отнести работу головного мозга в состоянии покоя, поддержание памяти, внутренних и внешних рецепторов и эффекторов периферической нервной системы. К переменным затратам следует относить то повышение потребления энергии мозгом, которое происходит при активном решении животным задач питания, размножения и выживания. Это не значит, что животное то спит, то борется за жизнь. Процессы не столь контрастны. Они «переплетены», но сытая и сонная львица затрачивает на содержание своего мозга намного меньше, чем голодная и во время охоты. Тем более это не значит, что энергетические затраты на содержание мозга имеют одинаковый характер у животных разных систематических групп. Метаболизм теплокровных и холоднокровных позвоночных глубоко различается по уровню обменных процессов и затратам на поддержание работы нервной системы. Для первичноводных позвоночных характерны относительно небольшой головной мозг, но высокоразвитый спинной мозг и периферическая нервная система. У ланцетника головной мозг не имеет чёткой анатомической границы со спинным и идентифицируется только по топологическому положению и цитологическим особенностям строения. У других первичноводных — круглоротых, хрящевых, лопастепёрых, лучепёрых и костистых рыб — головной мозг небольшой по отношению к размерам тела (см. рис. I-7). В этих группах доминирует периферическая нервная система. Она, как правило, в несколько десятков, а то и в сотни раз больше головного и спинного мозга вместе взятого. Более того, если принять массу головного мозга за единицу, то масса спинного мозга будет в среднем составлять от 1 до 30 таких единиц. Иначе говоря, масса спинного мозга обычно больше, чем головного, или равна ей. Следовательно, большую часть энергетических расходов в нервной системе первичноводных животных следует считать постоянными. Небольшой мозг даже в состоянии высокой активности не может существенно повлиять на изменение энергетических затрат. Примером могут служить акулы-няньки. При массе тела около 20 кг их головной мозг весит только 7–9 г, спинной мозг — 15–20 г, а вся периферическая нервная система по приблизительным оценкам весит около 250–300 г. Понятно, что головной мозг составляет только 3 % массы всей нервной системы. Допустим, что потребление энергии мозгом активного животного увеличилось в 3 раза. Это изменение всё равно будет ничтожно малым на фоне постоянной активности периферической нервной системы. Данный пример показывает, что большая доля энергетических затрат первичноводных животных приходится на периферическую нервную систему.

Таким образом, маленькие первичноводные животные с относительно большой нервной системой легко осуществляют мобилизацию организма при смене форм поведения. Избегание опасности, поиск добычи, преследование конкурирующей особи происходят в любой последовательности, прекращаются и начинаются почти мгновенно. Все, кто содержал аквариумных рыбок, много раз наблюдал подобную активность. Небольшому организму достаточно влияния нервной системы для быстрого изменения поведения. У крупных первичноводных животных головной мозг относительно мал и не может быстро мобилизовывать животное прямым действием нервной системы, тем более что поведение в основном детерминировано. Нервная система практически не может ничего добавить к врождённым формам поведения, поэтому её участие в изменении формы поведения сигнальное. Нервная система только сообщает организму о необходимости изменить форму поведения.

Следовательно, нужен простой и недорогой механизм запуска специфического поведения. С одной стороны, он должен быть зависимым от нервной системы и при этом влиять сразу на весь организм. С другой стороны, он должен продолжать действовать продолжительное время и оказывать вторичное влияние на саму нервную систему. Такой механизм запуска врождённых форм поведения сложился у животных ещё на заре появления хордовых. Это нейроэндокринная система с центральной регуляцией через головной мозг. Действительно, большая часть эндокринных желёз позвоночных контролируется гипофизом и гипоталамусом. Их активность регулирует гормональный статус животных и часто предопределяет выбор конкретной формы поведения. Для первичноводных энергетические затраты на содержание небольшого мозга невелики. Роль мозга сводится к управлению телом и генерализованному запуску врождённых форм поведения, поэтому ожидать сложной и индивидуализированной активности от сельди, акулы, ската или многопёра не приходится. «Недорогая» нервная система с инертной гормональной регуляцией врождённого набора форм поведения кажется небольшим достижением эволюции. Тем не менее именно эта простая схема регуляции поведения и дала позвоночным те необычайные преимущества, которые мы можем наблюдать у видов, переживших все катаклизмы истории Земли.

Перейти на страницу:

Похожие книги

Достаточно ли мы умны, чтобы судить об уме животных?
Достаточно ли мы умны, чтобы судить об уме животных?

В течение большей части прошедшего столетия наука была чрезмерно осторожна и скептична в отношении интеллекта животных. Исследователи поведения животных либо не задумывались об их интеллекте, либо отвергали само это понятие. Большинство обходило эту тему стороной. Но времена меняются. Не проходит и недели, как появляются новые сообщения о сложности познавательных процессов у животных, часто сопровождающиеся видеоматериалами в Интернете в качестве подтверждения.Какие способы коммуникации практикуют животные и есть ли у них подобие речи? Могут ли животные узнавать себя в зеркале? Свойственны ли животным дружба и душевная привязанность? Ведут ли они войны и мирные переговоры? В книге читатели узнают ответы на эти вопросы, а также, например, что крысы могут сожалеть о принятых ими решениях, воро́ны изготавливают инструменты, осьминоги узнают человеческие лица, а специальные нейроны позволяют обезьянам учиться на ошибках друг друга. Ученые открыто говорят о культуре животных, их способности к сопереживанию и дружбе. Запретных тем больше не существует, в том числе и в области разума, который раньше считался исключительной принадлежностью человека.Автор рассказывает об истории этологии, о жестоких спорах с бихевиористами, а главное — об огромной экспериментальной работе и наблюдениях за естественным поведением животных. Анализируя пути становления мыслительных процессов в ходе эволюционной истории различных видов, Франс де Вааль убедительно показывает, что человек в этом ряду — лишь одно из многих мыслящих существ.* * *Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин — основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Франс де Вааль

Биология, биофизика, биохимия / Педагогика / Образование и наука
Расширенный фенотип
Расширенный фенотип

«Расширенный фенотип» – одна из лучших книг известного учёного и видного популяризатора науки Ричарда Докинза. Сам автор так сказал про неё в предисловии ко второму изданию: «Думаю, что у большинства учёных – большинства авторов – есть какая-то одна публикация, про которую они говорили бы так: не страшно, если вы никогда не читали моих трудов кроме "этого", но "этот" пожалуйста прочтите. Для меня таким трудом является "Расширенный фенотип"». Помимо изложения интересной научной доктрины, а также весьма широкого обзора трудов других исследователей-эволюционистов, книга важна своей глубоко материалистической философской и мировоззренческой позицией, справедливо отмеченной и высоко оцененной в послесловии профессионального философа Даниэла Деннета.

Ричард Докинз

Биология, биофизика, биохимия