Тектонические подвижки по радиально-концентрическим трещинам приводят к образованию в осадочном чехле односторонних изгибов пластов (флексур), краевых валов, цепочек антиклинальных поднятий. К этим же зонам приурочены концентрические полосы разуплотнения и трещиноватости пород, обеспечивающие пути для движения подземных флюидов. Но что самое удивительное, в кольцевую систему хорошо вписываются многие нефтяные и газовые месторождения. На рис. 4 показан нефтегазоносный регион юго-востока Волго-Уральской провинции. Даже неискушенный глаз замечает приуроченность месторождений углеводородов к кольцевым структурам. Причем если месторождение располагается внутри кольцевой структуры и лежит на месте пересечения нескольких кольцевых структур, то такое месторождение крупнее и характеризуется наибольшим стратиграфическим диапазоном нефтегазоносности вскрытых продуктивных горизонтов [Дегазация Земли и геотектоника, 1985]. Чем же это объясняется?
Ряд исследователей, например геолог Г. П. Попсуй-Шапко, так рисует процесс формирования месторождений углеводородов в зонах кольцевых структур. Высокая прогретость недр кольцевых структур ускоряет процессы катагенетических изменений рассеянного органического вещества. По трещинам из глубинных очагов поднимаются потоки водорода, которые, контактируя с органическим веществом, вызывают его гидрогенизацию. Этому в значительной степени способствуют алюмосиликатные минералы горных пород, выступающие как катализаторы. Важное влияние на метанизацию органики оказывают, по мнению Г. П. Попсуй-Шанко, и знакопеременные вариации термоакустических, электромагнитных и ультразвуковых полей земной коры. Такое совместное воздействие естественных полей Земли и потока глубинного водорода обеспечивает превращение органического вещества в сложные углеводородные соединения. В краевых зонах кольцевых структур происходит замещение рассеянных в породе твердых частичек органического вещества углеводородами нефтяного ряда с изменением химического состава исходной органики. Ширина зон нефтегазонакопления, примыкающих к кольцевым структурам, достигает в наиболее благоприятных случаях несколько десятков километров.
Автор изложенной концепции считает, что нефтегазопродуктивные кольцевые структуры обладают диаметром во многие сотни километров. Корреляции кольцевых структур диаметром менее 300 км с залежами углеводородов не наблюдается. Не установлена также связь скоплений нефти и газа с кольцевыми структурами, диаметр которых превышает 1,5–2 тыс. км. Анализируя закономерности размещения месторождений углеводородов с 16 наиболее изученными кольцевыми структурами, исследователь приходит к выводу о том, что в их ареале располагается 80–98 % продуктивных площадей. Кольцевые структуры как бы подтягивают к себе углеводородные флюиды, принуждая их аккумулироваться в своих трещиноватых зонах.
Итак, кольцевым структурам отводится некая магическая роль в отношении локализации нефти и газа. Между тем если вникнуть в суть этого вопроса, то приуроченность месторождений углеводородов к кольцевым структурам не более загадочна, чем их связь с разломами земной коры. Ведь кольцевые структуры — это не что иное, как зоны дробления, повышенной трещиноватости коры, т. е. то же самое, что и разломы. Только форма у первых кольцевая, а у вторых линейная.
А если это так, то объяснение причин территориальной связи месторождений нефти и газа с разломами земной коры одновременно даст ответ и на вопрос: почему эти месторождения формируются и в зонах кольцевых структур? «Неорганики», как мы знаем, используют подобные факты для подтверждения правоты своих взглядов. Мы же попытаемся подойти к этой проблеме с иной стороны, но это будет специальной темой нашего разговора.
Плазменная нефть
С некоторой долей условности к неорганическим гипотезам можно отнести концепцию происхождения нефти, выдвигаемую томским ученым членом-корреспондентом АПН СССР А. А. Воробьевым. Автор исходит из представления о важной роли, которую играют в развитии нашей планеты электрические процессы. По его мнению, в литосфере Земли имеются тела с очень высокими диэлектрическими свойствами, гораздо с большими, чем в атмосфере. А если это так, то электрические разряды в литосфере должны возникать весьма часто, с большой интенсивностью и иметь серьезные последствия для жизни Земли. Развивая свою мысль о роли электрических разрядов, ученый допускает, что под их воздействием в литосфере вещество может перейти в плазменное состояние. Этому будут способствовать проникновение в недра космических частиц высокой энергии, а также различные механо-химические явления.