В персидском сборнике рассказов «Тысяча и один день» (не путать с известными сказками «Тысяча и одна ночь») мы знакомимся с жестокой принцессой Турандот, которая загадывает своим женихам загадки и лишает их головы, если они не находят ответа. В конце концов появляется некий принц, которому удается разгадать все три загадки: «Что рождается каждую ночь и умирает на рассвете?» (Надежда.) «Что пылает подобно пламени, но не пламя?» (Кровь.) «Что похоже на лед, но обжигает?» (Турандот.) Казалось бы, можно играть свадьбу, но принц понимает, что так он никогда не завоюет ее любовь. Поэтому в свою очередь предлагает принцессе загадку: она должна угадать его имя. Если ей это удастся, она может распорядиться его жизнью, как ей будет угодно. Поскольку принц находится вдали от родины, он уверен, что никто его здесь не знает, но одна из рабынь Турандот (когда-то похищенная принцесса, которая любила принца) узнает его и предлагает бежать вместе с ней. Принц отвергает ее предложение, и она, пылая чувством мести, выдает Турандот его имя. Но все кончается благополучно: Турандот признается принцу в любви, и они вместе восходят на трон. Мы так подробно пишем обо всем этом, чтобы продемонстрировать, какое место занимают загадки, пророчества и хитрые логические задачи в истории литературы. Загадки всегда были не просто упражнением для мозга, а некими моральными вехами, Божественными откровениями, выражением древней мудрости.
В завершение нашего литературного экскурса предлагаем вам загадку от нашего старого доброго знакомого тайного советника Гёте:
Он брат среди многих братьев и ничем не отличается от них. Он столь же дорог и ценен, как и все остальные, но появляется в семье лишь изредка и к нему относятся, словно к приемному ребенку.
Загадки как урок естествознания
В большинстве логических задач находят отражение наши познания в математике и физике. Такие задачи позволяют не только детям, но и взрослым людям понять, какое значение имеет математика в повседневной жизни, даже если все выученные в школе формулы давно забыты. В качестве примера приведем классическую историю. На берегу реки стоит крестьянин с волком, козой и капустой. Он хочет перевезти их на другой берег, но его лодка настолько мала, что он может взять с собой только что-то одно: либо волка, либо козу, либо капусту. И вот тут возникает проблема: если оставить вдвоем волка и козу, волк съест козу. Если оставить козу и капусту, коза съест капусту. Как же переправить всех троих? Такие взаимоисключающие комбинации постоянно встречаются в прикладной математике. Это хорошо известно кибернетикам и программистам.
Еще одна классическая задача математика Жозефа Бертрана, составленная в 1888 году, посвящена теории вероятности. У нас есть три комода, и в каждом из них по два ящика. В первом комоде в обоих ящиках лежит по золотой монете, во втором комоде в каждом ящике лежит по серебряной монете, а в третьем комоде в одном ящике лежит золотая, а во втором – серебряная монета. Нам надо наугад открыть любой ящик в одном из комодов. Какова вероятность того, что там лежит золотая или серебряная монета? Совершенно очевидно, что она составляет один к трем. Итак, мы открываем ящик и находим там золотую монету. Какова теперь вероятность, что во втором ящике того же комода лежит серебряная монета? Вероятно, ваш ответ будет 50:50, но мы предлагаем вам спокойно подумать еще раз.
В 1920-е годы в Америке была очень популярна одна задача. Она настолько завоевала умы, что вместо приветствия люди зачастую спрашивали друг друга: «Так сколько же лет Анне?» Условие задачи звучит так: «Мэри 24 года. Сейчас ей вдвое больше лет, чем было Анне, когда Мэри было столько же лет, сколько Анне сейчас. Сколько сейчас лет Анне?»