Читаем Проклятые вопросы полностью

Все результаты появились как следствие естественного развития новой области науки. Однако уже первые шаги в этом направлении открыли возможности новых практических применений лазеров. Как только это было осознано и оценено, началась планомерная разработка специализированных лазеров, отвечающих конкретным запросам науки и техники. В свою очередь, появление новых лазеров открывало все новые пути их использования. Этот замкнутый процесс еще далеко не закончен.

Проблема лазерного термояда потребовала создания целых систем огромной мощности и очень большой энергии, излучающих лазерные импульсы с большой точностью в заданные моменты времени. Иначе невозможно одновременно — со многих сторон — поразить мишень из термоядерного горючего и сжать ее. Мощность, развиваемая таким лазером, превосходит мощность самой большой гидроэлектростанции. Но, конечно, вследствие ничтожно малой длительности лазерного импульса излучаемая энергия не очень велика, хотя она и превосходит энергию среднего орудийного выстрела.

Для промышленных целей — сверления и обработки поверхности рубинов, алмазов, твердых сплавов — применяются твердотельные лазеры (обычно на стекле) или лазеры на смеси углекислого газа с азотом и гелием.

Лазеры на стекле, окрашенном ионами редкоземельного элемента неодима, работают не только в промышленности, но и в медицине, где они помогают излечивать некоторые формы рака и служат хирургам в качестве инструмента для бескровных операций. Без них не обходятся дальномеры и оптические локаторы, они позволяют обнаруживать загрязнения в атмосфере и измерять скорость ветра и течения воды.

Лазеры на углекислом газе используют для сварки и резки металлов, для раскроя материи и кожи. Они также приносят пользу медикам и химикам, технологам и физикам.

Большая часть лазеров излучает свет с вполне определенной длиной волны, изменять которую удается только в очень узких пределах. Последующее развитие лазеров пошло в двух противоположных направлениях.

Одно из них — создание сверхстабильных лазеров, длина волны которых фиксирована с огромной точностью. Она известна и остается неизменной в пределах миллионной части от миллиардной доли своей величины. Это наибольшая точность, достигнутая в науке и технике.

Второе направление — разработка лазеров, длина волны которых может по желанию оператора изменяться в широких пределах и устанавливаться в точности на заданное значение. Для этой цели обычно применяются лазеры, рабочим веществом которых служат растворы красителей. Такие лазеры незаменимы для решения сложных задач разделения изотопов и для управления химическими реакциями. Лазерный метод позволяет более экономично, чем какой-либо другой, отделять один изотоп легких элементов от его двойников. Сейчас усилия многих ученых направлены на создание эффективного метода разделения изотопов урана, этого основного горючего для атомных электростанций. Лазер помогает химикам получать новые соединения, недоступные традиционным химическим методам. Ему покорились даже инертные газы. В течение долгого времени они оправдывали свое название, не вступая в химическое соединение с другими элементами. Сравнительно недавно ученым с помощью лазера удалось заставить их при известных условиях нарушить свою инертность. Полученные соединения были взяты в качестве рабочих веществ для новых лазеров, которые обещают стать весьма эффективными.

Квантовая электроника не только открывает новые возможности другим областям науки и техники, но и активно использует их новейшие достижения. Например, полупроводниковые лазеры, в которых первоначально применялись лишь соединения индия с сурьмой, теперь работают и на более сложных соединениях трех и четырех элементов, а также на элементах из кремния и германия высшей чистоты.

После появления лазеров было реализовано и одно из поразительных изобретений — голография. Мощные газовые и твердотельные лазеры позволяют зафиксировать и воспроизвести объемные изображения движущихся предметов. Записывать и анализировать разнообразную сложную информацию. Производить измерения различных величин, таких, как скорость и смещение, изменение температуры и давления, производить анализ состава крови и расшифровку текстов, решать множество других разнообразных научных и технических задач, каждая из которых вполне заслуживает отдельного подробного описания.

Итак, перед нами раскинулась и засверкала радуга возможностей, которые таятся в новой области науки — квантовой электронике.

СЕКРЕТ УСПЕХА

Мы узнали о решительной готовности лазерщиков перевести на принципиально новые рельсы развитие целых областей промышленности и техники. Покорение энергии ядерного синтеза даст неиссякаемые энергетические ресурсы. Осуществится давняя мечта человечества напоить водой пустыни, превратить районы вечной мерзлоты в сады, преодолеть космические дали…

Создание принципиально новой техники связи, оптической связи, вызовет революционные преобразования в культурной жизни общества, в сфере образования, в общении людей между собой.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже