Перестраиваемые системы обратной связи были созданы при помощи давно известных оптикам элементов — призм и дифракционных решёток, с которыми знаком каждый школьник.
Большая часть достижений в области создания перестраиваемых лазеров на красителях принадлежит белорусскому академику Б. И. Степанову и руководимому им коллективу физики Института Белорусской академии наук в Минске.
Создание первых лазеров стало началом пути, который ещё не пройден до конца. Более того, этот путь сразу начал ветвиться по мере того, как открывались новые возможности применения лазеров и, соответственно, возникали новые требования к ним.
Один из путей — увеличение энергии лазерного излучения.
На этом пути началось увлекательное соревнование газовых лазеров и лазеров на стекле. Учёные перепробовали множество газовых смесей. В результате были получены сотни составов, способных к лазерной генерации. Каждый из них генерировал на своей, отличной от других, частоте. Некоторые генерировали сразу на нескольких частотах. Впрочем, применение особых систем обратной связи позволяет варьировать обе возможности.
Наиболее мощными, способными непрерывно выделять большую энергию лазерного излучения, оказались смесь углекислого газа с азотом и некоторыми другими добавками, а также смесь окиси углерода (угарного газа) с азотом и другими добавками. Излучение обоих лежит в инфракрасном диапазоне. Первый работает на волне около десяти микрон, а второй — около пяти микрон.
Увеличение мощности лазера требует увеличения количества рабочего вещества, а это связано с увеличением выделяемого тепла и, естественно, ведёт к поискам мер эффективного охлаждения рабочего вещества. Для газовых лазеров эта задача оказалась более простой, чем для лазеров других типов. Здесь можно просто заменять (продувать) газовую смесь через рабочий объём лазера. В начале нагретые газы выпускали наружу, а на их место из баллонов вводили новые порции. Но когда мощности (а следовательно, и расход газов) стали слишком большими, были разработаны лазеры с замкнутым циклом. В них нагретая газовая смесь вытягивается из рабочего объёма при помощи вентилятора, продувается через теплообменник, где она интенсивно охлаждается, и снова направляется в рабочий объём.
Именно такие лазеры применяют технологи для резки металлов и сплавов, реставрации металлических изделий направлением, закалки сталей и для других целей. Создание таких лазеров — заслуга промышленности. Ho, конечно, принципы их построения родились в лабораториях учёных.
Газовые лазеры заняли лидирующее место и в других областях науки и техники. Сейчас лазеры на смеси гелия и неона, а также лазеры на углекислом газе успешно соревнуются с квантовыми стандартами частоты радиодиапазона. Они открыли реальную возможность создания единого эталона времени и длины.
Сейчас эталонами времени (частоты) служат квантовые эталоны. Они основаны на применении пучков атомов цезия, пролетающих внутри вакуумной трубки через специально сформированные магнитные и высокочастотные поля сантиметрового диапазона волн. Их преимуществом является не только огромная стабильность каждого прибора (ошибка в одну секунду может накопиться лишь за миллионы лет), но и надёжность конструкции, обеспечивающая возможность того, что любой из правильно изготовленных приборов такого типа фиксирует одну и ту же частоту с погрешностью не более 10–14.
Лазерные стандарты частоты уже догнали цезиевые эталоны по стабильности работы, но ещё нет уверенности в том, что каждый из них воспроизводит с этой точностью одну и ту же частоту. Когда удастся реализовать эту возможность, отпадёт и необходимость пользоваться отдельным эталоном длины.
Первоначально эталоном длины служил тщательно изготовленный стержень из платино-иридиевого сплава. Затем этот уникальный рукотворный эталон был заменён природным: в качестве эталона была избрана длина волны, соответствующая одной из спектральных линий, испускаемых атомами криптона.
Техническое воплощение такого эталона имеет вид стеклянного баллона, заполненного газообразным криптоном при малом давлении. При пользовании эталоном внутри него зажигают электрический разряд.
Таким путём не удалось существенно уменьшить погрешность определения единицы длины (она равна 10-8), но переход от искусственного эталона к природному обеспечил устойчивость системы мер.
Теперь, когда погрешность частоты лазера уменьшилась до 10–14, стало естественным принять длину его волны (обладающую столь же малой погрешностью) за основу эталона длины. Погрешность лазерного эталона длины в миллион раз меньше, чем у принятого теперь эталона, основанного на длине волны спектральной линии криптона.
Сверхстабильные лазеры дали потрясающую возможность наблюдать спектры одиночных атомов и ионов. А это открывает перспективу получения эталонов частоты с погрешностью 10–17, то есть ещё в тысячу раз меньшей, чем у существующих эталонов.
Наблюдения спектров одиночных атомов и ионов открывают небывалые возможности изучения их строения и свойств сил, действующих в микромире.