Читаем Prolog полностью

Не разрешается вести поиск на глубине большей, чем МаксГлуб. Программная реализация этого ограничения сводится к уменьшению на единицу величины предела глубины при каждом рекурсивном обращений к вглубину2 и к проверке, что этот предел не стал отрицательным. В результате получаем программу, показанную на рис. 11.8.

Упражнения

11. 1.    Напишите процедуру поиска в глубину (с обнаружением циклов)

        вглубину1( ПутьКандидат, Решение)

отыскивающую решающий путь Решение как продолжение пути ПутьКандидат. Оба пути представляйте списками вершин, расположенных в обратном порядке так, что целевая вершина окажется в голове списка Решение.

Посмотреть ответ

11. 2.    Напишите процедуру поиска в глубину, сочетающую в себе обнаружение циклов с ограничением глубины, используя рис. 11.7 и 11.8.

11. 3.    Проведите эксперимент по применению программы поиска в глубину к задаче планирования в "мире кубиков" (рис. 11.1).

11. 4.    Напишите процедуру

        отобр( Ситуация)

для отображения состояния задачи "перестановки кубиков". Пусть Ситуация - это список столбиков, а столбик, в свою очередь, - список кубиков. Цель

        отобр( [ [a], [e, d], [с, b] ] )

должна отпечатать соответствующую ситуацию, например так:

                е         с

      a        d         b

      ================

Назад | Содержание | Вперёд

Назад | Содержание | Вперёд

11. 3.    Поиск в ширину

В противоположность поиску в глубину стратегия поиска в ширину предусматривает переход в первую очередь к вершинам, ближайший к стартовой вершине. В результате процесс поиска имеет тенденцию развиваться более в ширину, чем в глубину, что иллюстрирует рис. 11.9.

Поиск в ширину программируется не так легко, как поиск в глубину. Причина состоят в том, что

Рис. 11. 9. Простое пространство состояний:  а  - стартовая вершина,

f  и  j  - целевые вершины. Применение стратегии поиска в ширину

дает следующий порядок прохода по вершинам: а, b, c, d, e, f. Более

короткое решение [a, c, f] найдено раньше, чем более длинное

[а, b, e, j]

нам приходится сохранять все множество альтернативных вершин-кандидатов, а не только одну вершину, как при поиске в глубину. Более того, если мы желаем получить при помощи процесса поиска решающий путь, то одного множества вершин недостаточно. Поэтому мы будем хранить не множество вершин-кандидатов, а множество путей-кандидатов. Таким образом, цель

        вширину( Пути, Решения)

истинна только тогда, когда существует путь из множества кандидатов Пути, который может быть продолжен вплоть до целевой вершины. Этот продолженный путь и есть Решение.

11. 3. 1.    Списковое представление множества кандидатов

В нашей первой реализации этой идеи мы будем использовать следующее представление для множества

        решить( Старт, Решение) :-

                вширину( [ [Старт] ], Решение).

        вширину( [ [Верш | Путь] | _ ], [Верш | Путь] ) :-

                цель( Верш).

        вширину( [ [В | Путь] | Пути], Решение ) :-

                bagof( [B1, В | Путь ],

                ( после( В, В1), not  принадлежит( В1, [В | Путь])),

                НовПути),

                        % НовПути - ациклические продолжения пути [В | Путь]

                конк( Пути, НовПути, Пути1),  !,

                вширину( Путь1, Решение);

                вширину( Пути, Решение).

                                % Случай, когда у В нет преемника

Рис. 11. 10.  Реализации поиска в ширину.

путей-кандидатов. Само множество будет списком путей, а каждый путь - списком вершин, перечисленных в обратном порядке, т. е. головой списка будет самая последняя из порожденных вершин, а последним элементом списка будет стартовая вершина. Поиск начинается с одноэлементного множества кандидатов

        [ [СтартВерш] ]

Общие принципы поиска в ширину таковы:

Для того, чтобы выполнить поиск в ширину при заданном множестве путей-кандидатов, нужно:

если голова первого пути - это целевая вершина, то взять этот путь в качестве решения, иначе

удалить первый путь из множества кандидатов и породить множество всех возможных продолжений этого пути на один шаг; множество продолжений добавить в конец множества кандидатов, а затем выполнить поиск в ширину с полученным новым множеством.

В случае примера рис.11.9 этот процесс будет развиваться следующим образом:

        решить( Старт, Решение) :-

                вширь( [ [Старт] | Z ]-Z, Решение).

        вширь( [ [Верш | Путь] | _ ]-_, [Верш | Путь] ) :-

                цель( Верш).

        вширь( [ [В | Путь] | Пути]-Z, Решение ) :-

Перейти на страницу:

Похожие книги

Слово о полку Игореве
Слово о полку Игореве

Исследование выдающегося историка Древней Руси А. А. Зимина содержит оригинальную, отличную от общепризнанной, концепцию происхождения и времени создания «Слова о полку Игореве». В книге содержится ценный материал о соотношении текста «Слова» с русскими летописями, историческими повестями XV–XVI вв., неординарные решения ряда проблем «слововедения», а также обстоятельный обзор оценок «Слова» в русской и зарубежной науке XIX–XX вв.Не ознакомившись в полной мере с аргументацией А. А. Зимина, несомненно самого основательного из числа «скептиков», мы не можем продолжать изучение «Слова», в частности проблем его атрибуции и времени создания.Книга рассчитана не только на специалистов по древнерусской литературе, но и на всех, интересующихся спорными проблемами возникновения «Слова».

Александр Александрович Зимин

Древнерусская литература / Прочая старинная литература / Прочая научная литература / Древние книги / Литературоведение / Научная литература