Читаем Prolog полностью

Иллюстрацией к этому определению может служить рис. 13.4. Используя стоимости, мы можем формулировать критерии оптимальности решения. Например, можно определить стоимость решающего графа как сумму стоимостей всех входящих в него дуг. Тогда, поскольку обычно мы заинтересованы в минимизации стоимости, мы отдадим предпочтение решающему графу, изображенному на рис. 13.4(с).

Однако мы не обязательно должны измерять степень оптимальности решения, базируясь на стоимостях дуг. Иногда более естественным окажется приписывать стоимость не дугам, а вершинам, или же и тем, и другим одновременно.

Подведем итоги:

И / ИЛИ-представление основано на философии сведения задач к подзадачам.

Вершины И / ИЛИ-графа соответствуют задачам; связи между вершинами - отношениям между задачами.

Вершина, из которой выходят ИЛИ-связи, называется ИЛИ-вершиной. Для того, чтобы решить соответствующую задачу, нужно решить одну из ее задач-преемников.

Вершина, из которой выходят И-связи, называ ется И-вершиной. Для того, чтобы решить соответствующую задачу, нужно решить все ее задачи-преемники.

При заданном И / ИЛИ-графе конкретная задача специфицируется заданием

        стартовой вершины и

        целевого условия для распознавания

        целевых вершин.

Целевые вершины (или "терминальные вершины") соответствуют тривиальным (или "примитивным") задачам.

Решение представляется в виде решающего графа - подграфа всего И / ИЛИ-графа.

Представление задач в форме пространства состояний можно рассматривать как специальный частный случай И / ИЛИ-представления, когда все вершины И / ИЛИ-графа являются ИЛИ-вершинами.

И / ИЛИ-представление имеет преимущество в том случае, когда вершинами, находящимися в отношении И, представлены подзадачи, которые можно решать независимо друг от друга. Критерий независимости можно несколько ослабить, а именно потребовать, чтобы существовал такой порядок решения И-задач, при котором решение более "ранних" подзадач не разрушалось бы при решении более "поздних" под задач.

Дугам или вершинам, или и тем, и другим можно приписать стоимости с целью получить возможность сформулировать критерий оптимальности решения.

Назад | Содержание | Вперёд

Назад | Содержание | Вперёд

13. 2.    Примеры И/ИЛИ-представления задач

13. 2. 1.    И / ИЛИ-представление задачи поиска маршрута

Для задачи отыскания кратчайшего маршрута (рис. 13.1) И / ИЛИ-граф вместе с функцией стоимости можно определить следующим образом:

ИЛИ-вершины представляются в форме X-Z, что означает: найти кратчайший путь из  X  в  Z.

И-вершины имеют вид

        X-Z  через  Y

что означает: найти кратчайший путь из  X  в   Z,  проходящий через  Y.

Вершина X-Z является целевой вершиной (примитивной задачей), если на карте существует непосредственная связь между  X  и  Z.

Стоимость каждой целевой вершины X-Z равна расстоянию, которое необходимо  преодолеть по дороге, соединяющей X с Z.

Стоимость всех остальных (нетерминальных) вершин равна 0.

Стоимость решающего графа равна сумме стоимостей всех его вершин (в нашем случае это просто сумма стоимостей всех терминальных вершин). В задаче рис. 13.1 стартовая вершина - это   а-z.  На рис.

Рис. 13. 5.  Решающее дерево минимальной стоимости для задачи

поиска маршрута рис. 13.1, сформулированной в терминах И / ИЛИ-

графа.

13.5 показан решающий граф, имеющий стоимость 9. Это дерево соответствует пути [a, b, d, f, i, z], который можно построить, если пройти по всем листьям решающего дерева слева направо.

13. 2. 2.    Задача о ханойской башне

Задача о ханойской башне (рис. 13.6) - это еще один классический пример эффективного применения метода разбиения задачи на подзадачи и построения И / ИЛИ-графа. Для простоты мы рассмотрим упрощенную версию этой задачи, когда в ней участвует только три диска:

Имеется три колышка  1,  2  и  3  и три диска  аb  и  с  (а   -  наименьший из них, а  с  -   наибольший). Первоначально все диски находятся на колышке 1. Задача состоит в том, чтобы переложить все диски на колышек 3. На каждом шагу можно перекладывать только один диск, причем никогда нельзя помещать больший диск на меньший.

Эту задачу можно рассматривать как задачу достижения следующих трех целей:

    (1)        Диск  а   -  на колышек 3.

    (2)        Диск  b   -  на колышек 3.

    (3)        Диск  с   -  на колышек 3.

Беда в том, что эти цели не независимы. Например, можно сразу переложить диск  а  на колышек 3, и первая цель будет достигнута. Но тогда две другие цели станут недостижимыми (если только мы не отменим первое наше действие). К счастью, существует такой удобный порядок достижения этих целей, из которого можно легко вывести искомое решение.

Рис. 13. 6.  Задача о ханойской башне

Перейти на страницу:

Похожие книги

12 великих трагедий
12 великих трагедий

Книга «12 великих трагедий» – уникальное издание, позволяющее ознакомиться с самыми знаковыми произведениями в истории мировой драматургии, вышедшими из-под пера выдающихся мастеров жанра.Многие пьесы, включенные в книгу, посвящены реальным историческим персонажам и событиям, однако они творчески переосмыслены и обогащены благодаря оригинальным авторским интерпретациям.Книга включает произведения, созданные со времен греческой античности до начала прошлого века, поэтому внимательные читатели не только насладятся сюжетом пьес, но и увидят основные этапы эволюции драматического и сценаристского искусства.

Александр Николаевич Островский , Иоганн Вольфганг фон Гёте , Оскар Уайльд , Педро Кальдерон , Фридрих Иоганн Кристоф Шиллер

Драматургия / Проза / Зарубежная классическая проза / Европейская старинная литература / Прочая старинная литература / Древние книги
Волчья тропа
Волчья тропа

Мир после ядерной катастрофы. Человечество выжило, но высокие технологии остались в прошлом – цивилизация откатилась назад, во времена Дикого Запада.Своенравная, строптивая Элка была совсем маленькой, когда страшная буря унесла ее в лес. Суровый охотник, приютивший у себя девочку, научил ее всему, что умел сам, – ставить капканы, мастерить ловушки для белок, стрелять из ружья и разделывать дичь.А потом она выросла и узнала страшную тайну, разбившую вдребезги привычную жизнь. И теперь ей остается только одно – бежать далеко на север, на золотые прииски, куда когда-то в поисках счастья ушли ее родители.Это будет долгий, смертельно опасный и трудный путь. Путь во мраке. Путь по Волчьей тропе… Путь, где единственным защитником и другом будет таинственный волк с черной отметиной…

Алексей Семенов , Бет Льюис , Даха Тараторина , Евгения Ляшко , Сергей Васильевич Самаров

Фантастика / Приключения / Боевик / Славянское фэнтези / Прочая старинная литература