Читаем Пролог: Мегатренд альтернативной энергетики в эпоху соперничества великих держав полностью

Потенциальная выгода от мегатренда альтернативной энергетики возрастает благодаря перспективе создания действительно «альтернативных» или даже фантастических источников энергии. Технологии, которые в настоящее время кажутся невероятными, такие как энергия приливов, волн, водорода, магнитного поля Земли и солнечная энергия с орбиты, которые могут быть разработаны в ходе развития мегатренда, способны изменить баланс глобальной энергетической безопасности. Для того чтобы эти технологии способствовали энергетической безопасности, их теоретические возможности следует поставить на рельсы практического применения.

Приливы и отливы возникают благодаря изменениям положения Луны относительно Земли и Земли внутри Солнечной системы. Приливы более предсказуемы, чем переменчивый ветер или энергия Солнца, которая зависит от уровня солнечного излучения и погодных условий. Самые первые случаи применения энергии приливов известны в Средние века, а согласно некоторым источникам, ее использовали еще в Древнем Риме. По словам писателя, изобретателя и футуриста Артура Чарльза Кларка, «довольно неуместно называть нашу планету “Земля”, когда очевидно, что она – “Океан”»[73]. Энергия приливов может вырабатываться тремя способами: с помощью приливного течения, с помощью запруд (низких плотин) и приливных лагун[74]. Энергия, вырабатываемая при помощи генераторов приливных потоков, в целом экологичнее и меньше воздействует на экосистему. Подобно ветряным турбинам, многие генераторы приливных потоков вращаются под водой благодаря движению глубинных вод.

Число сторонников энергии приливов растет. Разрабатываются многочисленные проекты ее включения в национальные электросети, что способствует распространению и коммерческому применению этих технологий. В настоящее время в мире реализуется несколько пилотных и демонстрационных проектов, в том числе в Испании, Швеции, США, Республике Корея и Китае[75]. При этом пока технология энергии приливов была протестирована в ограниченном объеме, и многие вопросы, связанные с ее использованием, остаются без ответа. Ее проблемы главным образом связаны с особенно высокими начальными затратами и потребностью в технологиях хранения энергии, которые соответствуют времени приливов и отливов. Кроме того, существует неопределенность в отношении эффективности и экологического воздействия широкомасштабного внедрения приливной энергетики.

Технологии волновой генерации улавливают и транспортируют энергию, вырабатываемую поверхностными волнами океана. Эта энергия используется для производства электроэнергии, опреснения воды и ее закачки в резервуары. Энергию волн трудно использовать, поскольку океан непредсказуем. Поэтому энергия волн редко генерируется в производственных масштабах, поскольку соответствующие технологии и инфраструктура находятся на очень ранней стадии развития и стоимость технологий высока[76]. Тем не менее в рамках ряда проектов изучается возможность создания жизнеспособных и пригодных к эксплуатации систем, таких как крупный строящийся коммерческий объект волновой энергетики в Швеции[77].

Сложно определить преимущества, которые могут дать технологии приливов и волн конкретным заинтересованным сторонам. Очевидно, что, так как они доступны не всем странам и субъектам, эти технологии могут привести к конфронтации за право доступа, особенно на спорных морских границах.

На первый взгляд, водород – это энергетическая панацея, ведь он содержит много энергии и практически не загрязняет окружающую среду[78]. Однако это нетипичный возобновляемый ресурс. Водород не первичный источник энергии, а скорее энергетический вектор, поскольку энергию получают за счет другого источника. Свободного водорода нет ни в атмосфере Земли, ни где-либо еще на планете – его нужно добывать, обычно из воды или углеводородов. Хотя сложно прогнозировать долгосрочное развитие этой отрасли, водородные топливные элементы считаются перспективной технологией. Они могут обеспечивать теплом и электричеством здания и приводить в действие электродвигатели транспортных средств[79]. Хотя водород остается дорогостоящей и трудно реализуемой технологией, реальное его применение может изменить текущий геополитический баланс.

Производство огромного количества энергии за счет ядерного синтеза было давней мечтой физиков. Перспективы термоядерного синтеза возникли после Второй мировой войны, когда физики начали воспроизводить реакцию, которая происходит на Солнце и звездах. В реакциях термоядерного синтеза обычно соединяются два изотопа водорода – дейтерий и тритий. При соединении под высоким давлением и температуре они сплавляются вместе, превращаясь в плазму. Во время этой реакции высвобождаются нейтроны и энергия. Ядерный синтез направлен на захват этой энергии и позволяет производить электричество обычными методами (например, с помощью пара).

Перейти на страницу:

Похожие книги

10 гениев политики
10 гениев политики

Профессия политика, как и сама политика, существует с незапамятных времен и исчезнет только вместе с человечеством. Потому люди, избравшие ее делом своей жизни и влиявшие на ход истории, неизменно вызывают интерес. Они исповедовали в своей деятельности разные принципы: «отец лжи» и «ходячая коллекция всех пороков» Шарль Талейран и «пример достойной жизни» Бенджамин Франклин; виртуоз политической игры кардинал Ришелье и «величайший англичанин своего времени» Уинстон Черчилль, безжалостный диктатор Мао Цзэдун и духовный пастырь 850 млн католиков папа Иоанн Павел II… Все они были неординарными личностями, вершителями судеб стран и народов, гениями политики, изменившими мир. Читателю этой книги будет интересно узнать не только о том, как эти люди оказались на вершине политического Олимпа, как достигали, казалось бы, недостижимых целей, но и какими они были в детстве, их привычки и особенности характера, ибо, как говорил политический мыслитель Н. Макиавелли: «Человеку разумному надлежит избирать пути, проложенные величайшими людьми, и подражать наидостойнейшим, чтобы если не сравниться с ними в доблести, то хотя бы исполниться ее духом».

Дмитрий Викторович Кукленко , Дмитрий Кукленко

Политика / Образование и наука