Читаем Промышленное освоение космоса полностью

Труднее определить работу ветра. Поставим на каждые 10 аров поверхности суши по одной ветрянке. Тогда у нас получится на суше 150 миллиардов мельниц. Допустим, площадь мельничного круга в 100 м2, средняя скорость ветра 5 м/сек. Теперь по известным формулам найдем, что работа каждой ветрянки в секунду составит 28 кг-м/сек, а работа всех — 4200×109 кг-м или 42 метрические силы. Эта воображаемая работа в 84 раза больше возможной работы водопадов и в 19 раз больше угольной. Если же принять во внимание, что уголь эксплуатирует только 10% энергии, то значение ветряной энергии будет в 190 раз значительнее. Но она рассеяна и концентрация ее еще далека от осуществления и дорога. Для мелкой промышленности она драгоценна и часто имеется под рукой, на каком-нибудь пригорке. Надо еще отметить достоинства ископаемого угля в сравнении с белым и голубым. Он работает на фабриках и заводах. Почти вся металлургия основана на каменном угле. Теперь, правда, стремятся совершать добычу металлов электрическими печами, что осложняет оценку угля. Уголь же дает и множество продуктов обихода и индустрии: краски, ароматы, масла, спирты, медикаменты и прочее. С другой стороны, энергия белого и голубого угля неисчерпаема, чего нельзя сказать про уголь черный. Все же полная энергия всех работ угля в 125 000 раз меньше полной энергии Солнца, отпущенной на долю Земли.

Половина солнечной энергии, не отраженной Землей, почти целиком обращается в тепло. Благодаря этому средняя температура земной поверхности составляет около 13–15 °C. Без этого нельзя обойтись: и люди, и животные, и растения погибли бы от холода. Так что обращение энергии лучеиспусканием в тепло как будто неизбежно и целесообразно. Но что бы случилось, если бы вся энергия лучей Солнца превращалась в механическую работу и в потенциальную энергию растений с их плодами? Сейчас ведь эксплуатируются человеком с помощью растений только десятитысячные доли этой энергии. Не охладела ли бы от этого Земля и не погиб бы человек? Это так бы и было, если бы совершалось только одно накопление растительных и животных продуктов и вообще аккумулирование энергии. Но ведь и то, и другое расходуется: продукты поедаются или сжигаются на потребу человека и потому выделяют обратно всю поглощенную ими солнечную энергию. Что же касается до механической работы, то ведь и она, дробя, например, камни, возвращает все взятое от Солнца в виде тепла. Удары, трение и так далее опять дают теплоту.

Итак, мы можем нисколько не опасаться охлаждения Земли, хотя бы при самом совершенном использовании солнечного лучеиспускания превращением его в механическую работу, пищу, ткани и другие продукты, расходуемые человеком. Даже одежда, истлевая, возвращает заимствованную от Солнца энергию в виде тепла. Даже умерший, разлагаясь, постепенно возвращает ту же энергию. Напротив, разумное и выгодное использование солнечной энергии будет способствовать равномерности земной температуры. В самом деле, избыток солнечной энергии на экваторе поглотится растениями и плодами, и там от этого не будет очень жарко. Но пища, топливо и прочее, перенесенные к северу или югу (в высокие широты — к холоду), где в них более нуждаются, выделяют свою потенциальную энергию и тем уменьшают холод высоких широт.

Мы видим, что совершенное использование не лишает нас достаточного тепла. Напротив, умеренные страны сделаются теплее, а несносный жар тропических стран будет терпимее.

Пока Солнце дает нам очень немного в сравнении с тем, что может дать. Это зависит от человеческого незнания и неумения. Малость получаемого ограничивает размножение человека и делает его рабом природы и своих нужд — вечным мучеником непосильного труда. Используемая механическая работа водопадов в 543 000 раз меньше солнечной энергии, а работа угля в 125 000 раз меньше. Растениями же используется примерно не более одной десятитысячной мощи лучей.

Пока только намечается рациональное использование Солнца с помощью отобранных растений, поставленных в искусственную обстановку и тогда могущих использовать в тропическом климате до 5% и более солнечной энергии. Это возможно и сейчас. Такие растения и теперь есть. Тогда совершенно померкнет значение всех родов угля (черного, белого и голубого). В самом деле при пятипроцентном использовании Солнца оно уже даст в 6000 раз больше, чем дает ископаемое. Когда человеческое население Земли увеличится во столько же раз, тогда упрочится и господство его над планетой. Но теоретически возможно использование до 50% и более лучистой энергии.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Инженерная эвристика
Инженерная эвристика

В книге представлены классические и новейшие — от эвристических до логических — методы активизации инженерно-технического мышления. Авторы демонстрируют междисциплинарный подход к решению изобретательских задач и тренингу интеллекта на основе универсальных языков. Последовательность в решении научно-технических проблем достигается методом выявления и разрешения противоречий. При этом формулировка проблемы в виде парадокса оказывается сильнейшим стимулом для развития творческой мысли.Книга содержит более 170 вопросов и задач, на которых заинтересованный читатель может проверить качественный уровень собственного мышления, а в случае затруднений — обратиться к приводимым решениям и ответам. Многие из этих задач озвучены авторами в 2011–2012 гг. в ходе семинаров и тренингов в рамках проекта ООО «ЛУКОЙЛ-Инжиниринг» «Академия молодого инноватора», на интеллектуальных состязаниях молодых специалистов компании.Рекомендуется инженерам, преподавателям и учащимся инженерно-технических и естественнонаучных специальностей вузов, инновационно ориентированным молодым специалистам производственного и исследовательского комплексов, а также всем читателям, заинтересованным в формировании у себя эффективного, продуктивного, действенного мышления, достижении нового интеллектуального уровня развития.

Дмитрий Анатольевич Гаврилов , Нурали Нурисламович Латыпов , Сергей Владимирович Ёлкин

Технические науки / Психология / Образование и наука