Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Как уже говорилось, функция Jступенчатая. На рисунке 19.2 показано, как она выглядит при аргументах до 10. Как видно, функция Jсовершает прыжок от одного значения к другому, остается на новом значении на некоторое время, потом совершает новый прыжок. Что это за прыжки? Какой закон за ними стоит?

Рисунок 19.2.Функция J(x).

Вглядевшись очень внимательно в выражение (19.1), мы увидим следующую закономерность. Во-первых, когда x— простое число, функция J(x)совершает прыжок на высоту 1, потому что (x)— число простых чисел, не превышающих x, — при этом увеличивается на 1. Во-вторых, когда xявляется точным квадратом простого числа (например, x = 9, что есть квадрат числа 3), J(x)совершает прыжок на одну вторую, потому что квадратный корень из xесть простое число, а значит, (x)возрастает на 1. В-третьих, когда xесть точный куб простого числа (например, x = 8, что есть куб числа 2), J(x)совершает прыжок на одну треть, потому что кубичный корень из xравен простому числу, а значит, ( 3 x)возрастает на 1, и т.д.

Попутно заметим, что функция Jобладает тем же свойством, которым мы снабдили функцию (x): в точке, где реально происходит прыжок, она принимает значение, лежащее посередине между теми значениями, от которого и до которого она прыгает.

Для полноты представления функции Jна рисунке 19.3 изображен график J(x)при аргументах до 100. Самый маленький прыжок здесь совершается при x = 64 — это число представляет собой шестую степень (64 = 2 6), так что функция Jпрыгает при x = 64 на одну шестую.

Рисунок 19.3.Еще о функции J(x).

Какую пользу может принести подобная функция? Терпение, терпение. Сначала придется совершить один из тех логических скачков, о которых я предупреждал в начале главы.


IV.

Напоминаю в который уже раз, что у математиков есть масса способов обращать соотношения. Дали нам выражение для Pчерез Q— отлично, посмотрим, не найдется ли способа выразить Qчерез P. В течение столетий в математике был развит целый инструментарий для того, чтобы совершать обращения, — он включает набор приемов для использования в самых разных условиях и обстоятельствах. Один из таких приемов носит название мебиусова обращения, и оно-то нам сейчас и нужно.

Не буду пытаться объяснить мебиусово обращение в общем виде. Оно описано в любом хорошем учебнике по теории чисел (см., например, раздел 16.4 в классической монографии «Теория чисел» Харди и Райта), а кроме того, поиск в Интернете наведет вас на множество ссылок. Подражая до некоторой степени самим функциям и J, я вместо того, чтобы уныло тащиться от одной точки в моих рассуждениях к другой, перескочу сразу к следующему факту: применение мебиусова обращения к выражению (19.1)дает такой результат:

(x)= J(x)- 1/ 2J(x) - 1/ 3J( 3x) - 1/ 5J( 5x) + 1/ 6J( 6x) - 1/ 7J( 7x) + 1/ 10J( 10x) + …. (19.2)

Можно заметить, что некоторые члены (четвертый, восьмой, девятый) здесь отсутствуют. А из тех, что присутствуют, некоторые (первый, шестой, десятый) входят со знаком плюс, тогда как другие (второй, третий, пятый, седьмой) — со знаком минус. Ничего не напоминает? Здесь спрятана функция Мебиуса из главы 15. На самом деле

(где 1x как и в других местах в книге, есть, конечно, просто x). Почему, как вам теперь кажется, это назвали мебиусовымобращением?

Итак, мы записали функцию (x), выразив ее через J(x). Это чудесно, потому что Риман нашел способ, как выразить J(x)через (x).

Прежде чем расстаться с выражением (19.2), надо еще упомянуть, что, подобно выражению (19.1), это не бесконечная сумма, а конечная. Это происходит из-за того, что функция J, как и функция , равна нулю, когда xменьше 2 (взгляните на график!), а если последовательно извлекать корни из какого-нибудь числа, то результат рано или поздно упадет ниже 2 и там останется. Например,

(100) =
J(100) - 1/ 2 J(10) - 1/ 3 J(4,64…) - 1/ 5 J(2,51…) + 1/ 6 J(2,15…) - 0 + 0 + … = 28 8/ 15- 2 2/ 3- 5/ 6- 1/ 5+ 1/ 6,

что дает в точности число 25, которое и в самом деле является числом простых чисел меньших 100. Волшебство.

А теперь повернем Золотой Ключ.


V.

Вот Золотой Ключ, первое равенство в статье Римана 1859 года, полученное нами в главе 7, когда я убеждал вас, что это просто хитрый способ переписать решето Эратосфена:

He будем забывать, что числа, появляющиеся в правой части, — это в точности все простые числа.

Возьмем логарифм от обеих частей. Если что-то равно чему-то, то, конечно, и логарифм одного должен быть равен логарифму другого. Согласно 9-му правилу действий со степенями, которое гласит, что ln( axb) = ln  а+ ln  b, получаем

Но, поскольку ln 1/ a= -ln  aсогласно 10-му правилу, это выражение равно

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука