Читаем Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. полностью

Тем временем работу Римана 1859 года тщательно исследовали и придали его рассуждениям более аккуратный вид. Удостоенный премии результат Адамара также представлял собой значительный шаг в этом направлении. Далее, в 1895 году в Берлине (Германия в то время была империей, правил которой кайзер Вильгельм I) немецкий математик Ханс фон Мангольдт расчистил значительную часть еще не пройденных дебрей и доказал основной результат Римана о связи функции (x), подсчитывающей количество простых чисел, с нулями дзета-функции.

Оставались только два ключевых вопроса: Гипотеза и ТРПЧ. К этому времени все заинтересованные наблюдатели понимали, что Гипотеза — более сильное утверждение. Если бы Гипотезу (молоток) удалось доказать, то ТРПЧ (орех) была бы получена как следствие, без всяких дополнительных усилий. Но ТРПЧ можно было установить и исходя из более слабых результатов, без привлечения Гипотезы, причем доказательство ТРПЧ не означало бы справедливости Гипотезы.

Итак, что было делать математику, если учесть широкую распространенность убеждения, что Стилтьес разделался как с первой, так и со второй проблемой? Начать работать над доказательством более слабого результата — путь к которому благодаря работе по расчистке, которую провели Адамар и фон Мангольдт, был теперь довольно ясен? Но стоило ли затрудняться из-за этого, если более сильный результат Стилтьеса по поводу Гипотезы может появиться в тот момент, когда работа сделана лишь наполовину? С другой стороны, к середине 1890-х годов с момента сделанного Стилтьесом заявления прошло 10 лет, и многих, должно быть, начали одолевать сомнения. Эти сомнения никак не касались личности Стилтьеса; в математике нередки случаи, когда математик верит, что доказал некий результат, а потом, просматривая доказательство, обнаруживает (или, чаще, обнаруживают его коллеги), что в нем содержится логический изъян. Так случилось с первым доказательством Последней теоремы Ферма, данным Эндрю Уайлсом в 1993 году. Такое происходит при более драматических обстоятельствах с героем, от лица которого ведется повествование в написанном в 2000 году романе Филиберта Шогта «Дикие числа». Никто не стал бы думать о Стилтьесе хуже, если бы с ним случилось то, что сплошь и рядом случалось в карьерах математиков. Но где все же это доказательство?

И Шарль де ля Пуссен в Лувенском университете в Бельгии, и Жак Адамар в Бордо взялись за более скромную задачу и вскоре добились успеха. Они доказали ТРПЧ. Тем не менее оба, должно быть, гадали, имели ли смысл их усилия, поскольку, даже если бы их статьи были опубликованы раньше статьи Стилтьеса, его гораздо более сильный результат затмил бы их более слабые достижения. Действительно, Адамар пишет в своей статье: «Стилтьес доказал, что все мнимые нули функции (s)имеют (в согласии с предсказанием Римана) вид 1/ 2+ ti, где tвещественно; однако его доказательство не было опубликовано. Я просто намереваюсь показать, что (s)не может иметь нулей с вещественной частью, равной 1».

Доказательство Стилтьеса так и не было опубликовано; Стилтьес умер в Тулузе в последний день 1894 года. Адамар наверняка знал об этом в ходе работы над своей статьей в 1895-1896 годах, так что он, по-видимому, ожидал появления доказательства в ранее не опубликованных результатах среди наследия Стилтьеса. Но оно так и не появилось. Тем не менее до самого недавнего времени не исключалось, что Стилтьес мог доказать Гипотезу. Однако в 1985 году Эндрю Одлыжко и Херман те Риле доказали результат, который ставит теорему 15.1под серьезное сомнение. Вера в потерянное стилтьесово доказательство Гипотезы Римана после этого, как я понимаю, в значительной мере улетучилась. {A3}


VI.

Как уже отмечалось, одним из последствий национальной трагедии 1870–1871 годов стало усиление консервативных элементов в офицерской прослойке французской армии, а также определенное дистанцирование этого класса от основного направления развития французского общества. Это повлекло за собой одно колоссального размера последствие в последние годы XIX века — дело Дрейфуса.

Безнадежно пытаться в нескольких абзацах разобраться и восстановить справедливость в этом знаменитом деле. Оно более десятилетия находилось в центре французской общественной жизни, да и поныне может еще распалить страсти. По этому поводу имеется обширная литература, а также фильмы, романы и по крайней мере один телевизионный мини-сериал (на французском). В кратчайшем изложении: офицер Генерального штаба французской армии Альфред Дрейфус, происходивший из богатой еврейской буржуазной семьи, был арестован в конце 1894 года по обвинению в измене. Его судили закрытым военным трибуналом, осудили, разжаловали и пожизненно заключили в тюрьму на Чертовом острове во Французской Гвиане. Дрейфус, который громко заявлял о своей невиновности, не имел никаких явных мотивов для измены — он всегда проявлял безупречный патриотизм и при этом никогда не нуждался в деньгах.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука