Подведем итог. Если мы собираемся исследовать космос с Земли, современные технологии не оставляют нам особого выбора: необходимо использовать свет. Никто не может переместиться на другой конец Вселенной. Никто не может телепортироваться туда мгновенно. В итоге, как и в случае с видимой Вселенной, рассматривание ночного неба похоже на получение со всех сторон авторских фотооткрыток, проштампованных в разное время в различных местах прошлого Вселенной в соответствии с тем, когда и откуда они начали свой путь. Только собрав воедино все эти открытки, начиная с границ Вселенной, мы сможем воссоздать кусочек ее истории, какой она видна с Земли.
Именно тот кусочек, который вы облетели в первой части.
Глава 5
Расширение
Повторюсь: все сведения о далекой Вселенной получены из доходящего до нас света.
Для его расшифровки и понимания необходимо точно выяснить, какую информацию несет в себе свет и как он взаимодействует с материей и ее строительными блоками – атомами, с которыми он встречается в космосе.
В следующей части книги вы погрузитесь в самое сердце атомов, но на данный момент все знать о них не нужно. Давайте просто уточним, что атомы можно описать как круглые ядра, окруженные вращающимися вокруг электронами, и эти электроны не беспорядочны, а организованы в определенные оболочки вокруг ядра.
Может оказаться заманчивым представить их в качестве планет, кружащихся вокруг центральной звезды, но это может привести к путанице – собственно, мы и называем траектории электронов вокруг своих атомных ядер
Имея нужную скорость, теоретически планета может вращаться вокруг своей звезды на любом предпочитаемом расстоянии, но это, безусловно, не случай с электронами. В отличие от планетарных орбит, орбитали отделены друг от друга запретными для электронов зонами – местами, где электронов просто не может быть. Кроме того, электроны также способны легко и непринужденно перепрыгнуть эти запретные области с одной орбитали на другую.
ДЛЯ ПЕРЕМЕЩЕНИЯ С ОДНОЙ ОРБИТАЛИ НА ДРУГУЮ ЭЛЕКТРОНЫ ДОЛЖНЫ ПОГЛОТИТЬ ИЛИ ВЫДЕЛИТЬ НЕКОТОРУЮ ЭНЕРГИЮ.
Тем не менее, и это ключевой момент, просто так скакать не получится.
Для перемещения с одной орбитали на другую электроны должны поглотить или выделить некоторую энергию.
И так как чем дальше электрон расположен от ядра атома, тем большим запасом энергии он обладает, то, чтобы перепрыгнуть на следующую, более удаленную от центра орбиталь, ему необходимо получить некоторую энергию, так же как пламя горелки заставляет подняться в воздух воздушный шар.
И наоборот, чтобы приблизиться к ядру, электрон должен избавиться от некоторой части энергии, как клапан выпуска горячего воздуха в воздушном шаре помогает ему вернуться на Землю.
Но откуда же берется эта энергия?
Оттуда же, откуда свет: электроны могут перепрыгивать с одной орбитали на другую, поглощая или испуская свет. Но
Переход с одной орбитали на другую заставляет электроны перепрыгивать разделяющие их запретные зоны, и осуществление такого поступка включает в себя поглощение или отдачу определенного количества энергии, соответствующего определенному световому лучу. Если бы попадающий на них свет был недостаточно насыщен энергией, то электроны не смогли бы совершить прыжок и остались бы на своем месте. И наоборот, при попадании на них
Это было выяснено человечеством в начале двадцатого века.
Такое открытие может не показаться прорывом, но это он и есть.
Эйнштейн (действительно вездесущий товарищ) получил в 1921 году Нобелевскую премию по физике за открытие данного закона на примере составляющих различные металлы атомов.[16]
Несколько десятилетий экспериментов (и размышлений), проведенных с тех пор на всех известных атомах Вселенной, заставили ученых понять, что энергия, необходимая любому электрону для перехода с одной орбитали на другую внутри какого-то атома, зависит от структуры этого конкретного атома. И тут нам очень-очень повезло, потому что различные виды энергии соответствуют различным источникам излучения – а с помощью телескопов мы, конечно, можем собирать его почти везде.
На практике этот простой факт означает, что ученые могут сказать, из чего состоят удаленные объекты, такие как звезды, облака газа или атмосферы далеких планет, даже не отправляясь туда.
А теперь о том, как ученым это удается.
Айжан Айдынгалиевна Мулдагалиева , З. К. Мадиева , Майкл Спенсер , Светлана Юрьевна Дмитриева , Шолпан Билашевна Гумарова , Эльмира Мяхмутовна Патеева
Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Учебники и пособия ВУЗов / Иностранные языки / Педагогика / Образование и наука