Читаем Простая сложная Вселенная полностью

Однако в квантовом мире это не просто тривиальная неопределенность. Это глубокое свойство природы. Оно говорит, что вы по большому счету не можете знать, где находится частица и с какой скоростью она движется. Это правило называется принципом неопределенности Гейзенберга в честь открывшего его немецкого физика-теоретика Вернера Гейзенберга. Гейзенберг является одним из отцов-основателей квантовой теории атомного мира. В 1932 году он получил за нее Нобелевскую премию по физике. Он знал, о чем говорит. Но, как и все остальные с тех пор и поныне, он не понимал ее. Она лежит за пределами нашей интуиции и противоречит здравому смыслу.

Принцип неопределенности немедленно делает квантовый мир весьма отличающимся от нашего повседневного, классического мира.

Прямо сейчас вы знаете, где находится книга, которую вы читаете, по отношению к вашему телу и с какой скоростью она движется или не движется. Следовательно, вы знаете ее положение и скорость с довольно высокой степенью точности. Тем не менее относительно обоих параметров существует некоторая неопределенность – неопределенность, слишком незначительная, чтобы ее заметить, и потому она не имеет значения.

Однако в микромире при вашем микроразмере вы бы не смогли удержать в руках книгу или даже фонарик. Если даже вы точно знаете, где лежит мини-копия этой книги, неопределенность в отношении ее скорости будет огромной, поскольку вы направите на нее много частиц просто для определения ее местоположения и никогда не будете в состоянии увидеть ее. Или наоборот, если бы вы точно знали, с какой скоростью движется книга, вам не удалось бы никакими средствами ее обнаружить, что делает ее труднодоступной для чтения. В микромире положение и скорость сливаются в туманной концепции. То же происходит с эффектом Казимира, и поскольку технологии становятся все тоньше, с этой проблемой инженерам приходится сталкиваться все чаще.

НАШИ КЛАССИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ О МЕСТЕ И СКОРОСТИ НЕ ПРИМЕНИМЫ В МИКРОМИРЕ. ПРИРОДА РАБОТАЕТ ПО-ДРУГОМУ.

Тем не менее принцип неопределенности Гейзенберга не является загадкой.

Он – факт.

Строго говоря, он даже не неопределенность. Он просто говорит, что наши классические представления о месте и скорости не применимы в микромире. Природа работает там по-другому, и у нас есть объясняющая и предсказывающая ее теория: квантовая физика. И эти странные эффекты точно достигнут наших масштабов, но мы просто не созданы чувствовать их. Они становятся незначительными, когда в них вовлечено слишком много частиц. И это тоже хорошо известный факт.

Так как же насчет тайны, которую мы ищем? Она существует?

Да.

Мы выпустили кое-что из только что сделанных вами расчетов: происходит коллапс квантовой волны.

Это и есть тайна.

И действительно загадочная.

Оставленные в покое, квантовые частицы ведут себя как размноженные изображения самих себя (фактически в качестве волн), одновременно движущихся по всем возможным маршрутам в пространстве и времени.

Теперь еще раз, почему мы не ощущаем это множество вокруг себя? Потому что мы все время исследуем окружающие нас вещи? Почему все проводимые эксперименты говорят, что положение частицы вдруг заставляет частицу быть где-то скорее, чем везде?

Никто не знает.

Перед экспериментом частица представляет собой волну возможностей. После него она оказывается где-то, а затем где-то навсегда, а не снова везде.

Странно.

Ничто в рамках законов квантовой физики не позволяет случиться такому коллапсу. Это экспериментальная и теоретическая тайна.

Квантовая физика обуславливает, что во всех случаях, когда есть нечто, оно, естественно, может превратиться во что-то другое, но не может исчезнуть. А поскольку квантовая физика позволяет нескольким возможностям существовать одновременно, то эти возможности должны сохраняться даже после произведения расчетов. Но они этого не делают. Все возможности, кроме одной, исчезают. Мы не видим вокруг никаких других. Мы живем в классическом мире, где все основано на квантовых законах, но ничто не напоминает квантовый мир.

Таким образом, возникает вопрос: как мы можем заставить квантовые эффекты проявиться в нашем человеческом масштабе, чтобы мы могли исследовать их и увидеть коллапс волны, если он там действительно есть, собственными глазами? Возможно ли это? И если можно было бы увидеть квантовые эффекты вроде этого, то что мы ожидаем увидеть?

В 1935 году, через два года после присуждения ему Нобелевской премии за работу по квантовой физике, австрийский физик Эрвин Шредингер придумал эксперимент по выведению квантовых эффектов в нашем масштабе. В нем приняли участие кот и коробка. И хотя это был лишь гипотетический эксперимент, ученые не перестают задаваться вопросом, жив ли до сих пор сидящий в коробке кот или умер.

Перейти на страницу:

Все книги серии Большая наука

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука