Во всех этих средах мы находим густонаселенные экосистемы, богатые клетками и видами. Подобно тому, как мы поступали с органами, тканями и эмбрионами, мы можем задаться вопросом, помогут ли биофизические принципы разобраться в таких ансамблях. В главе 6, например, мы интересовались, зачем бактерии плавают, и нашли объяснение в их стремлении к «пастбищам» посытнее. Но справедливо ли это для обитателей неспокойной среды кишечника? Мы можем изучить, прибегают ли микробы к самосборке в осязаемые физические структуры или хотя бы в абстрактные сети биохимического обмена. А еще мы можем исследовать с помощью биофизических инструментов работу микробной экосистемы – например, воздействовать на схемы принятия решений у бактерий и оценивать последствия. В этой главе мы еще сильнее приблизимся к границам наших знаний, где пока сложно формулировать не то что ответы, а даже вопросы.
Прежде чем вернуться к кишечному микробиому, я немного расскажу о двух общепринятых методах «переписи бактериального населения», опирающихся на сиквенсы ДНК. Первый задействует бактериальный ген 16S рРНК[37]
. Здесь не так важно, что ген кодирует, – главное, что одни его области почти идентичны у всех видов бактерий, а другие различаются. После транскрипции в РНК консервативные области (белые на рисунке) соответствуют фрагментам, критичным для трехмерной организации молекулы рРНК. В вариабельных областях (серых и черных) зафиксированы миллиарды лет эволюционной изменчивости, в течение которых разные виды приспосабливали базовую архитектуру рРНК под несколько разные обстоятельства.Получается, мы можем использовать один и тот же набор праймеров (см. главу 1), комплементарный одной или нескольким консервативным областям, чтобы запустить амплификацию ДНК любой бактерии и получить бессчетное количество копий всех генов 16S рРНК из нашего образца. Благодаря нескольким вариабельным участкам полные гены рРНК достаточно сильно различаются, и потому секвенирование полученных копий выявляет уникальную «подпись» каждого из видов – ген 16S рРНК напоминает нам одновременно и ручку, и отпечаток пальца.
Недостаток анализа 16S рДНК состоит в ограниченности результата простым перечислением бактерий в образце. Это все равно что получить список всех жителей города, лишенный каких-либо данных об их возрасте, профессиях, доходах, интересах и хоть чем-то, что помогло бы составить представление об этом городе. Если свежепрочитанная последовательность совпадает с 16S рДНК какой-то уже известной бактерии, мы можем зацепиться за эту информацию, однако такое бывает нечасто, ведь большинство бактерий нам неизвестно. Более того, у близкородственных штаммов последовательности 16S рДНК бывают неотличимыми друг от друга – как если бы горожан в нашем списке перечислили только по фамилиям, не расписав по отдельности, скажем, родных братьев и сестер.
Альтернативный подход называется