Таким образом, летучие мыши доказывают Перлу и его последователям, что температура необязательно приближает смерть организма: всегда можно найти механизмы, которые позволят справиться с последствиями высокой скорости жизни – если только этому будет благоприятствовать отбор.
Скорость или стойкость
Для некоторых других животных теория скорости жизни также не вполне соответствует[470]
действительности. Те же дрозофилы растут быстрее при пониженной температуре, а моллюски и черви производят больше белков при 19 °С, чем при 25 °С. Даже у крыс, которых держали в холоде и которые умерли раньше времени, уровень обмена веществ (то есть количество сожженной энергии в килокалориях) был выше обычного – хотя согласно теории скорости жизни должен был быть ниже.У прочих млекопитающих, как, впрочем, и у птиц, уровень обмена веществ и продолжительность жизни вообще никак не связаны[471]
. А голый землекоп, который живет в условиях пониженной температуры и нехватки кислорода и должен бы являть собой классический пример того, как низкий обмен веществ ведет к низкому окислительному стрессу и долгой жизни, и вовсе не подчиняется никаким правилам. У него в клетках окисленных липидов в 10 раз больше[472], чем у родственных ему короткоживущих мышей.Что касается человека, то у него скорость обмена веществ с возрастом снижается[473]
. Недавно ученые построили кривую изменения интенсивности обмена веществ (в пересчете на массу тела) с возрастом и обнаружили, что она полностью совпадает с кривой Гомперца (то есть смертности). Более того, на их графике обмена веществ даже возникло "плато старения" после 108 лет – то самое, существование которого до сих пор под вопросом. Они считают, что это плато соответствует минимальному обмену веществ: снизить его уже невозможно, несмотря на потерю митохондрий, поэтому, заключают они, долгожителям приходится снижать массу тела, чтобы обмен веществ оставался постоянным.Получается, что количество затраченной организмом энергии не связано напрямую с температурой и не позволяет предсказать продолжительность жизни. Однако это не значит, что обмен веществ и окислительный стресс не играют в долголетии никакой роли. Возможно, дело не в том[474]
, сколько активных форм кислорода клетка произвела, а в том, сколько из них удалось обезвредить и какую часть повреждений удалось починить.А поскольку для работы антиоксидантов и систем клеточного ремонта нужна энергия, то оказывается, что продолжительность жизни лучше всего коррелирует[475]
со скоростью роста организма и корреляция эта отрицательная. Это тот самый эффект, с которым мы встречались еще в первой части книги, когда рисовали портрет животного-долгожителя: чем дольше организм развивается, чем длиннее его детство, тем меньше он производит свободных радикалов и тем дольше живет.Таким образом, усовершенствованная версия теории Перла могла бы звучать так: жизненная сила – это запас сил на рост. Насколько быстро эта сила будет расходоваться, зависит[476]
от того, как организм распоряжается своими ресурсами, а это уже, в свою очередь, определяется фазой жизни. Чем реже периоды роста или медленнее сам рост – тем целее запас сил и тем дольше жизнь. Например, в клетках голого землекопа действительно много окисленных липидов, но активные формы кислорода он утилизирует[477] в два – пять раз лучше, чем мышь, и после окончания роста[478] количество поврежденных молекул в его клетках не меняется[479], в то время как у мыши оно растет в течение жизни.Запретить или возглавить
Так или иначе, наша жизнь неразделимо связана с окислительным стрессом, и стресс же ее сокращает. Логично предположить, что, снизив уровень стресса в клетках, мы можем продлить собственную жизнь. Поэтому в конце ХХ века в моду вошли антиоксиданты, которые выступают в роли добрых сил в этой битве. Люди начали усиленно их поглощать[480]
, например, в составе чеснока, авокадо, бобов, ягод и темного шоколада или пищевых добавок. Появились так называемые зеленые коктейли и косметика с антиоксидантами (такими как коэнзим Q10) – все они были призваны снизить окислительный стресс в клетках и продлить молодость. Заодно вспомнили Лайнуса Полинга, который еще в середине ХХ века предлагал лечить все болезни ударными дозами витамина С. А российский академик Владимир Скулачев, сторонник митохондриальной теории старения, придумал свой антиоксидант (наподобие витаминов С и Е) на все случаи жизни: ион SkQ ("ион Скулачева"), который должен был смягчать окислительный стресс в митохондриях и беречь их смолоду.