Он нашел, что это очень загадочное явление, и стал изучать финальную модель для всех значений репродуктивного тренда. Результат оказался поразительным. При самых минимальных значениях популяция рыб естественным образом приходила к вымиранию. Если Мэй увеличивал значение репродуктивного тренда до определенного уровня, популяция могла выжить, и плавная кривая отражала ее уровни равновесия: чем выше значение репродуктивного тренда, тем сильнее оказывалась равновесная популяция.
Явление раздвоения имеет место не только в экологических моделях. В статье 1964 года «Проблема вывода климата из основного уравнения»[6]
, вПричина раздвоений в том, что существует внезапное и существенное изменение в преобладании различных контуров положительно воздействующих обратных связей. Возвращаясь к экономическим системам, подобная теоретическая структура выдвинута ученым Эрвином Лазло в 1987, который разделил параметры, способные воздействовать на преобладание тех или иных контуров в экономических системах, на три категории:
• Технологические инновации
• Конфликты и завоевания
• Дисбаланс социального и экономического характера, а именно: дефицит товаров, финансовые кризисы и так далее.
На основе модели Лазло экономическая система может двигаться от простого состояния, например, от простых циклических колебаний до более сложных осцилляций, скажем, до двухуровневого равновесия. Такое происходит, когда параметр стимулируется выше определенного критического уровня. Представьте себе картель поставщиков товаров. При формировании картельной цены ценовые движения могут сдвигаться от уровня, определяемого осцилляциями традиционного экономического цикла, до величины, диктуемой изменчивыми колебаниями между годами, различающихся предельно высокими ценами (жесткость цен), и годами с предельно низкими ценами (упадок и конкуренция). Другими альтернативными вариантами равновесия одной и той же системы могут быть инфляция и гиперинфляция или, скажем, низкое и высокое налогообложение.
Чем сильнее давление на критический параметр, тем больше возникнет раздвоений. Этот процесс нестабильных раздвоений называется каскадом Фейгенбаума[7]
(рис. 5), по имени математика того времени. В конечном счете, такой процесс ведет к хаосу.Рисунок 5 Каскад Фейгенбаума. Диаграмма показывает, как простое равновесие множится все больше и больше, приводя, в конце концов, к хаотическому поведению. Раздвоения создаются простым уравнением: (Хn
+1=r*Хn*(1-Хn)), где параметр R (горизонтальная ось) постепенно увеличивается от 1.68 до 4.00. (Источник: Е. Моускилд и Дж. Томсен, Датский Технический университет.)Один из самых необычных элементов в исследовании неупорядоченных систем описан математиком Бенуа Мандельбротом, который, кстати, работал в группе исследований и развития компании
«Что является размерами любого объекта?» «Это, — говорит Мандельброт, — зависит от того, насколько далеко вы находитесь». С дальнего расстояния объект может уместиться всего в одной-единственной точке. С расстояния 1 метра объект занимает легко распознаваемое пространство. Но если мы будем придвигаться к нему все ближе и ближе, задача измерения этой области становится все более сложным делом. Шершавость, неровность и раздробленность, существующие на поверхности объекта, будут все более явными.