В 1729 году астроном де Меран, особенно интересовавшийся вращением Земли вокруг своей оси, сделал открытие в совсем иной области. Он обнаружил, что у растений, выдерживаемых в темноте при постоянной температуре, наблюдается такая же периодичность движения листьев, как и у растений, испытывающих чередование света и темноты. Этот факт привлек внимание исследователей, и в последующие годы было проведено немало экспериментов над различными организмами. И выяснилось, что даже простейшие живые существа в условиях постоянного освещения (или темноты) сохраняют ритм колебаний активности и покоя, роста, деления и т. д., приближающийся к 24-часовому циклу. Этот ритм был назван «циркадным».
Серию опытов провели с белкой-летягой, ведущей ночной образ жизни. Ее помещали в клетку с беличьим колесом, снабженным устройством для записи числа оборотов, и держали в полной темноте несколько месяцев. Графики активности летяг, полученные с помощью колеса, со всей очевидностью показали, что белки оживлялись каждый вечер: беготня в колесе начиналась всякий раз через один и тот же промежуток времени, примерно равный суткам.
Эксперименты с мышами обнаружили, что у шести поколений этих животных, непрерывно выдерживаемых при свете, сохранялась одна и та же частота колебаний физиологических функций (двигательной активности; фаз сна и бодрствования и др.), приближающаяся к циркадному ритму.
Большой научный интерес представляют наблюдения за членами экспедиций, находившихся в Арктике, где такой фактор, как ежесуточный восход и заход солнца, отсутствовал. Исследования проводились на Шпицбергене в период полярного дня. Они показали, что непрерывное двухмесячное дневное освещение не действует заметным образом на циркадную ритмику физиологических процессов людей, прибывших из средних широт.
Таким образом, по современным научным представлениям, у всех растений и животных, помещенных в так называемые постоянные условия, проявляется физиологическая ритмичность циркадного типа. С этим и связана идея о существовании в организмах «биологических часов», от которых зависит регулирование физиологических процессов.
В основе регуляции физиологических функций одноклеточных организмов и растений в циркадном ритме лежат, очевидно, внутриклеточные биохимические процессы. Их ритмичность выработалась в результате приспособления к суточной периодичности дня и ночи на нашей планете. Интересный материал об этом читатель сможет найти в книге А. М. Эмме «Часы живой природы».
Опыты немецкого ученого Г. Клюга показали, что у червей, членистоногих и других беспозвоночных животных суточную ритмику физиологических функций регулирует нервная система.
Английская исследовательница Жаннет Харкер, имевшая дело с тараканами, этими типичными ночными животными, обнаружила, что у них роль главных «биологических часов» выполняет подглоточный нервный узел, выделяющий определенные химические вещества. Когда у насекомого, долго находившегося на свету и потерявшего четкий ритм двигательной активности, удаляли его нервный узел и заменяли другим, взятым от ритмически активной особи, деятельность оперированного животного через несколько дней становилась четко ритмической, причем новый ритм соответствовал ритму таракана-донора.
Наиболее сложны физиологические механизмы регуляции циркадного ритма у высших животных. У них есть сравнительно простые регуляторы, тесно связанные с обменом веществ, и более сложные, которые координируются мозгом. При этом суточная периодичность сна и бодрствования сохраняется у животных даже после удаления коры. Точно так же остается и суточная ритмика колебаний температуры тела, обменных процессов, частоты пульса, кровяного давления и других вегетативных функций. Значит, центры циркадной регуляции находятся в подкорковых образованиях и в стволовой части головного мозга. Но отсюда вовсе не следует, что кора не принимает участия в регуляции физиологических функций. Именно благодаря условнорефлекторной деятельности коры полушарий животное наилучшим образом приспосабливается к постоянно изменяющейся внешней среде.
Известно, что некоторые люди обладают удивительной способностью чувствовать время: они безошибочно определяют час дня, хорошо различают временные промежутки, длительность пауз и т. д.
Поскольку в межпланетном полете космонавты будут находиться в постоянных условиях без привычных геофизических воздействий (смена дня и ночи, сезонные изменения), возникает вопрос, в какой степени человек сможет оценивать циркадную ритмику физиологических процессов, то есть пользоваться «биологическими часами».
Для имитации космического полета, как уже говорилось, используются сурдокамеры, позволяющие устранять некоторые геофизические факторы.