Чтобы проверить истинность заключения, мы будем систематически комбинировать каждую из фигур посылки 1 с каждой из фигур посылки 2. Если найдется хотя бы одно сочетание, которое не соответствует заключению, то можно остановиться и сделать вывод, что заключение не является валидным. Если мы переберем все возможные сочетания фигур посылок 1 и 2 и все они не будут противоречить заключению, то заключение является валидным. Другими словами, если все сочетания посылки 1 с посылкой 2 подтверждают заключение, то оно валидно. Первые несколько раз эта процедура может показаться вам трудоемкой, но вскоре вы будете «видеть» ответы и находить способы сокращения процесса проверки всех возможных сочетаний.
Вот заключение:
Некоторые люди, получающие социальные пособия, являются нечестными
(Некоторые А есть С.)
Посылку 1 можно изобразить двумя способами, а посылку 2 – четырьмя. Я обозначила два рисунка для посылки 1 номерами 1а и 1б, а четыре рисунка для посылки 2 – номерами 2а, 2б, 2в и 2г. Чтобы работать систематично, вам необходимо использовать правила комбинаторного рассуждения, изложенные в предыдущем разделе. Начните с рисунка 1а и комбинируйте его по очереди с 2а, 2б, 2в и 2г. Затем повторите эту же процедуру с рисунком 1б, проверяя его сочетания с 2а, 2б, 2в и наконец с 2г. Конечно, есть надежда, что не придется проводить всю эту процедуру до конца, потому что можно остановиться, как только вы найдете первое сочетание, которое противоречит заключению о том, что «Некоторые
При сочетании этих двух изображений я получу рисунок, где Л будет внутри В, а В внутри С:
Это сочетание соответствует заключению о том, что «Некоторые
Сочетая 1 а с 26, я получаю рисунок, на котором
Это не противоречит заключению о том, что «Некоторые
Здесь ситуация несколько более запутанная, поскольку
Этот результат по-прежнему не противоречит тому, что «Некоторые
Круги
Этот результат по-прежнему не противоречит тому, что «Некоторые
Круги
Этот результат не согласуется с заключением о том, что «Некоторые
Можно остановиться! При данных двух посылках заключение «Некоторые люди, получающие социальные пособия, являются нечестными» нельзя считать валидным.
Я знаю, что проделанная работа кажется очень трудоемкой, но после того как вы решите несколько подобных задач, вы научитесь сразу находить комбинации, которые указывают на то, что заключение не валидно, поэтому не потребуется проверять все возможные комбинации. Но до тех пор, пока вы этому не научитесь, проверяйте систематически все комбинации. Перечень шагов, необходимых для проверки истинности заключения с помощью круговых диаграмм, приводится в табл. 4.2. Сделайте паузу и изучите эти шаги. При работе над остальными силлогизмами пользуйтесь этой таблицей.
1. Выпишите каждую посылку и заключение силлогизма
2. Рядом с каждым утверждением изобразите все возможные правильные диаграммы, пользуясь рис. 4.1.
3. Систематически комбинируйте каждую из диаграмм посылки 1 со всеми диаграммами посылки 2. Начните с комбинации посылки 1а (первая диаграмма посылки 1) и посылки 2а (первая диаграмма посылки 2). Затем проверьте комбинации посылки 1а со всеми остальными диаграммами посылки 2, после чего переходите к посылке 1б, сочетая ее со всеми диаграммами посылки 2. Продолжайте действовать аналогичным образом (посылка 1в со всеми диаграммами посылки 2, затем посылка 1г со всеми диаграммами посылки 2), до тех пор, пока…
4…не найдете хотя бы одно сочетание, которое не согласуется с заключением, или
5. …проверите все комбинации диаграмм посылок 1 и 2.