Кажется, что между физической нагрузкой и весом действительно существует корреляция. Люди, которые любят тренироваться, как правило, бывают худыми. Такая корреляция, при которой тенденция к росту одной переменной (физическая нагрузка) связана с тенденцией к убыванию другой переменной (вес), называется
Если вы хотите проверить гипотезу о том, что физическая нагрузка приводит к потере в весе, то используйте описанную выше трехступенчатую схему. Если испытуемые, которые случайным образом были отнесены к экспериментальной группе (тренирующейся), по истечении периода воздействия окажутся стройнее, чем те, кто не тренировался, то можно обоснованно заключить, что физическая нагрузка полезна для похудения.
На самом деле вопрос о причинах того или иного явления, как правило, сложен. Вероятно, точнее было бы использовать слово «влияние», а не «причина», потому что обычно на переменную влияет не одна другая переменная, а несколько. Мой коллега (д-р Ричард Блок из университета штата Монтана) предложил для пояснения этой мысли следующий пример: по какой причине человека, совершившего преступление, отправляют на виселицу – потому что кто-то дал ему деньги, на которые он купил оружие для совершения преступления; или потому что кто-то видел, как он совершил преступление; или потому что его никто не остановил? Единственную непосредственную причину удается определить довольно редко.
В целом, при рассмотрении связи между переменными существует несколько возможных объяснений. Кроме того, разумеется, возможно, что они вообще не соотносятся, или не коррелируют. Примерами переменных, между которыми нет корреляции, являются скорость печатания и размер шляпы машинистки, количество волос на голове и средний балл, рост водителя и скорость его реакции на экзамене по вождению.
Положительная корреляция существует между ростом и весом человека, между количеством церквей и числом проституток в городе (возрастает с ростом населения) и между количеством проданного мороженого и количеством зарегистрированных изнасилований (возрастает с повышением температуры воздуха). Примерами отрицательной корреляции являются количество потребляемого детьми фтора и количества их зубов, пораженных кариесом, количество часов, которые студент посвящает занятиям, и число провалов на экзаменах. При выяснении связи между двумя коррелирующими переменными может оказаться, что переменная Л вызывает изменения переменной
Мнимая корреляция
Мунсон (Munson, 1976) приводит забавный анекдот о том, как одно событие принимают за причину другого из-за того, что они происходят одновременно:
Фермер ехал со своей женой на поезде и увидел, как сидящий напротив человек достал что-то из сумки и начал есть. «Эй, мистер, – спросил фермер, – что это вы едите?» «Это банан, – ответил человек, – хотите, попробуйте сами».
Фермер взял банан, очистил его, и как раз в тот момент, когда он проглотил первый кусочек, поезд влетел в тоннель. «Не ешь его, Мод, – закричал он жене, – ты ослепнешь!» (р. 277)
Правда ли, что блондинки больше шутят? Авторы популярной рекламы краски для волос хотят заставить вас поверить, что если вы осветлите свои волосы, вам станет веселее жить. Многие считают, что раз они часто видят, как блондинки веселятся, блондинки живут веселее, чем, например, брюнетки. В этих наблюдениях есть одна загвоздка – существует множество блондинок, которые не развлекаются больше других (кстати, этому выражению крайне необходимо рабочее определение), но вы их не учитываете, потому что они сидят у себя дома или где-нибудь еще, где у вас мало шансов их увидеть. Термин
Представления о связях, существующих в мире, есть как у специалистов, так и у неспециалистов. Эти представления определяют характер наблюдений, которые они делают, и способ, с помощью которого ими определяется наличие связи между переменными.