Все задачи изначально представлены в вашей голове. Хорошо было бы выписать на бумагу пути решения задачи и ее цели или отобразить их в другой конкретной форме. Это снизит нагрузку на память и позволит вам ознакомиться с наглядным представлением задачи. Простейший пример помощи, которую могут оказать карандаш и бумага, это решение элементарной задачи на умножение. Попробуйте решить задачу, ничего не записывая:
976 х 893
Естественно, вы задумаетесь над этим пустяковым вопросом, поскольку он является простым, когда у вас под рукой карандаш и бумага, и сложным, требующим хорошей памяти, для вычисления в уме. Всегда, когда нужно сохранить в памяти ряд фактов или вариантов, полезно воспользоваться карандашом и бумагой.
«Медведь, выйдя из точки
Задача кажется вам странной или даже неразрешимой? Если вы нарисуете простую «карту» путешествия медведя, она будет похожа на клиновидный кусок пирога. В каком месте земного шара это возможно? Вспомните о глобусе. Наверное, вы сразу воскликните: «Ну конечно же, точка
Давайте рассмотрим еще одну задачу. Старый почтенный монах покидает свой монастырь ровно в 6 часов утра, чтобы взобраться по извилистой горной тропе на вершину и там уединиться. Он достигает вершины ровно в 4 часа вечера. Проведя на вершине ночь во сне и молитвах, он покидает вершину горы ровно в 6 часов утра и добирается до монастыря ровно в 4 часа вечера. Никаких ограничений на скорость монаха не накладывается. Известно, что по пути он несколько раз останавливается, чтобы отдохнуть. Спрашивается, существует ли на горной тропе такая точка, которую монах проходит в одно и то же время суток?
Остановитесь и подумайте некоторое время над этой задачей. Она вам кажется сложной? Есть два подхода, которые сделают ответ простым и очевидным, но прежде чем вы продолжите чтение, решите, какие шаги предприняли бы вы для отыскания решения, и попробуйте найти его. Как вы уже вероятно догадались, правильное представление задачи обеспечит успех в ее решении.
Одно из решений состоит в построении графиков подъема и спуска монаха. Графики могут иметь произвольную форму, поскольку мы ничего не знаем о характере движения монаха. Примеры графиков подъема и спуска приведены на рис. 9.3.
Теперь наложите эти графики друг на друга и посмотрите, пересекаются ли они в какой-нибудь точке. Если такая точка существует, то это означает, что в каждый из двух дней монах побывал в ней в одно и то же время. Это показано на рис. 9.4. Построение графика сделало решение наглядным. В действительности существует еще более простое решение этой задачи, если изменить ее формулировку и представить условие в эквивалентной, но несколько другой форме. Предположим, двое людей идут по одной и той же горной тропе в одно и то же время и в одно и то же утро. Если один из них вышел из монастыря, а другой с вершины горы, оба начали движение в 6 часов утра и пришли в конечный пункт своего маршрута в 4 часа вечера, то очевидно, что где-то на тропе они должны были обязательно встретиться, независимо от того, как часто каждый из них останавливался передохнуть или подумать. Таким образом, при изменении формулировки сложная задача может превратиться в тривиальную.
–
Рис. 9.3. Графики подъема и спуска монаха.
Графики имеют произвольную форму, поскольку монах мог отдыхать, когда хотел, – как при подъеме на вершину, так и при спуске с нее.
Рис. 9.4. Накладывая друг на друга графики подъема и спуска, легко можно увидеть, что обязательно должно быть место, где они пересекаются. Таким образом, должно существовать место на горной тропе, которое монах пересекал в каждый из дней в одно и то же время.