Читаем Психология критического мышления полностью

Упрощение

Вы все обдумываете и обдумываете свою задачу; попробуйте упростить ее…Довели ли вы ее до максимально возможного упрощения, до той ясности, которая наталкивает на мысли?

Полья (Ро1уа, 1962)


Задачи, вызывающие затруднения при решении чаще всего сложны по структуре. Хороший способ справиться с такой задачей – это упростить ее настолько, насколько возможно. Нередко удачно выбранная форма наглядного представления задачи сама способствует ее упрощению, поскольку позволяет «увидеть» эффективный путь решения.

Предположим, вы столкнулись с классической задачей «кошка на дереве». Согласно устоявшемуся мнению, кошки могут карабкаться вверх по деревьям, но не могут спускаться. (На самом деле в этом утверждении не больше правды, чем в том, что слоны боятся мышей.) Предположим, вам надо снять кошку с ветки, расположенной на высоте 10 футов. В вашем распоряжении имеется единственная лестница длиной 6 футов. Для того чтобы лестница была надежно установлена, ее основание должно находиться на расстоянии трех футов от ствола. Дотянетесь ли вы до кошки?

Лучший путь к решению этой (и не только этой) задачи – графически изобразить исходные данные. Условия задачи графически показаны на рис. 9.14. Как только информация представлена в виде чертежа, ее можно воспринимать как простую геометрическую задачу: найти гипотенузу прямоугольного треугольника, если его катеты равны 10 и 3 футам. Такая формулировка задачи предполагает, что вы воспользуетесь своими знаниями о том, как вычисляются длины сторон треугольников. Факт остается фактом: когда для решения задачи требуется определенный уровень образования – его ничем не заменишь.



Рис. 9.14. Задача «кошка на дереве».


Если исходные данные представить в виде рисунка, задача превращается в простую геометрическую задачу.


Формула для нахождения гипотенузы треугольника имеет вид:

а2+ Ь2= с2.


Подставляя соответствующие значения в это уравнение, получим:


 102 + 32 = с2

100 + 9 = с2

                                                                                                         109 = с2

                                                                                                          V-109 = c

                                                                                                          с= 10,4


Таким образом, для того чтобы достать до ветки, нужна лестница длиной 10,4 фута. Но постойте, может, попробовать перерисовать задачу, используя условие, что для спасения кошки в вашем распоряжении имеется только шестифутовая лестница? На рис. 9.15 приведена несколько другая графическая интерпретация этой задачи.

Может быть использована та же формула, но теперь неизвестной величиной является не гипотенуза, а один из катетов прямоугольного треугольника.


– 


Рис. 9.15. Задачу «кошка на дереве» можно переформулировать таким образом: как высоко от земли располагается конец лестницы в 6 футов, если ее основание отставить на 3 фута от ствола?


Тогда и ответ получится другой.


Изменяя формулу, получим:


а2+ Ь2= с2

а2= с22

а2= 62-32

а2= 36-9

а2= 27

a=V-27

a =5,2


Таким образом, верхняя планка лестницы коснется ствола дерева на высоте 5,2 фута над землей. Сможете ли вы достать кошку? Нарисуйте себя на верхней ступеньке. Если вы выше 5 футов, то без труда дотянетесь до кошки, стоя на последней или даже предпоследней ступеньке. На самом деле вам даже не придется тянуться.

Упрощение является хорошей стратегией для решения абстрактных задач, сложных или содержащих информацию, не относящуюся к поиску решения. Часто стратегия упрощения работает рука об руку с выбором оптимальной формы представления задачи, поскольку именно удачное наглядное представление может существенно упростить задачу.

Обобщение и специализация

Иногда, столкнувшись с задачей, оказывается полезно рассмотреть ее как частный случай целого класса аналогичных задач (обобщение); или, наоборот, как специальный случай (специализация).

Чаще всего стратегии обобщения и специализации уместны при представлении задачи в форме древовидной диаграммы. Большинство целей в этом случае может одновременно классифицироваться как подчиненные для вышестоящей категории и главные для нижестоящей. Рассмотрим пример, проясняющий сказанное. Предположим, что перед вами как дизайнером мебели стоит задача разработки проекта специального удобного стула для чтения. Что бы вы предприняли для решения этой задачи?

Как вы уже, по-видимому, поняли – это пример нечетко поставленной задачи. Самая большая сложность состоит в том, чтобы выбрать: какой из нескольких возможных вариантов стульев наиболее подходит поставленной цели? Воспользуйтесь древовидной диаграммой, чтобы классифицировать стулья вообще и стулья для чтения в частности. Таких диаграмм можно построить множество; один из возможных вариантов приведен на рис. 9.16.



Перейти на страницу:

Похожие книги

Медвежатник
Медвежатник

Алая роза и записка с пожеланием удачного сыска — вот и все, что извлекают из очередного взломанного сейфа московские сыщики. Медвежатник дерзок, изобретателен и неуловим. Генерал Аристов — сам сыщик от бога — пустил по его следу своих лучших агентов. Но взломщик легко уходит из хитроумных ловушек и продолжает «щелкать» сейфы как орешки. Наконец удача улабнулась сыщикам: арестована и помещена в тюрьму возлюбленная и сообщница медвежатника. Генерал понимает, что в конце концов тюрьма — это огромный сейф. Вот здесь и будут ждать взломщика его люди.

Евгений Евгеньевич Сухов , Евгений Николаевич Кукаркин , Евгений Сухов , Елена Михайловна Шевченко , Мария Станиславовна Пастухова , Николай Николаевич Шпанов

Приключения / Боевик / Детективы / Классический детектив / Криминальный детектив / История / Боевики