Читаем Психология критического мышления полностью

Всего в этой главе было представлено 13 различных стратегий, способных оказать помощь при решении задач. Как узнать, какой из них воспользоваться, столкнувшись с конкретной задачей? Важно постоянно помнить, что эти стратегии не являются взаимоисключающими. Часто оказывается полезной их комбинация. Выбор наилучшей стратегии или комбинации стратегий зависит от сути задачи. Например, когда вы сдаете экзамен, вас могут просто попросить покинуть аудиторию, если вдруг обнаружится, что в качестве «консультанта» вы выбрали конспект своего соседа.

Описывая каждую из стратегий, я пыталась дать некоторые советы по ее использованию. В целом же более высокий уровень знаний — «стратегия выбора стратегии» — включает в себя следующее:

1. Если задача является нечетко поставленной, представьте ее цель и условие в нескольких различных формулировках.

2. Если задача имеет несколько (но небольшое количество) возможных решений, имеет смысл воспользоваться методом проб и ошибок.

3. Если задача слишком сложна, попытайтесь применить упрощение, анализ целей и средств, обобщение и специализацию.

4. Если от конечной цели отходит меньше путей, чем от исходного положения, примените стратегию решения с конца.

5. Если у вас есть возможность собрать дополнительную информацию, сделайте это. Поищите подсказки, посоветуйтесь со специалистом.

6. Если исходные данные задачи представляют собой упорядоченную последовательность или массив либо задача имеет равновероятные альтернативные решения, попробуйте воспользоваться методом деления пополам или отыскать правило, по которому построен массив данных.

7. Если количество возможных путей решения задачи слишком мало, то, для того чтобы генерировать дополнительные решения, примените мозговую атаку.

8. Проектные и инженерные задачи чаще других задач требуют поиска решений, которые должны будут удовлетворять самым противоречивым условиям.

9. Использование аналогий и метафор, консультация специалиста — все это наиболее широко применяемые стратегии для решения задач любого типа. Надо быть всегда готовым использовать визуализацию и выполнить осмысленный поиск аналогий с целью подбора аналогичного решения.

10. Помните, что это лишь советы по поиску решений задач. Наилучший способ стать высококлассным специалистом по решению задач — это решить как можно больше задач.


Трудности при решении задач

Задачи — это самый главный продукт, из нами производимых.

Бердсли

Функциональная привязанность и трафаретное мышление

Вспомните рассмотренную выше задачу о двух веревках. Цель состояла в том, чтобы одновременно ухватить концы обеих веревок, свешивающихся с потолка. Правильное решение заключалось в раскачивании одной из веревок с предварительно привязанным к ее концу грузом — например, плоскогубцами. Одной из причин, по которой эта задача кажется очень сложной, является функциональная привязанность. Человек настроен или «привязан» к обычному использованию плоскогубцев, и ему трудно осознать, что их можно использовать не по прямому назначению. Другой пример функциональной привязанности был упомянут во введении (глава 1). В классической задаче со свечой тестируемым было предложено прикрепить свечу к стене, чтобы она могла гореть, используя при этом лишь коробок с кнопками и несколько спичек. У людей, которым была предложена эта задача, возникали трудности с представлением коробка в качестве подсвечника, поскольку они воспринимали его как упаковку для спичек или кнопок, т. е. рассматривали только прямое функциональное назначение коробка.

Функциональная привязанность — это один из видов трафаретного мышления. Я рассматриваю эти понятия как «привычные способы мышления» человека. Они заранее определяют пути развития мысли и реакции человека. Чтобы продемонстрировать, насколько мощным может оказаться трафаретное мышление, рассмотрим задачу о девяти точках, приведенную на рис. 9.18. Отложите на время дальнейшее чтение и попытаетесь ее решить.




Рис. 9.18. Задача о девяти точках. Соедините все девять точек, проведя не более четырех прямых линий и не отрывая карандаш от бумаги.



Трудность решения этой задачи вытекает из автоматически воспринимаемого строгого расположения этих точек в форме квадрата. Большинство людей пытаются решить эту задачу, оставаясь в рамках воображаемого квадрата, образованного точками по внешней границе. Если вы продлите линии за границы воображаемого квадрата, то обнаружите довольно простое решение задачи. Кроме того, большинство людей полагает, что линии должны проходить через центры точек. Одно из решений задачи о девяти точках показано на рис. 9.19.




Рис. 9.19. Одно из возможных решений задачи о девяти точках.



Заметьте, что решение подразумевает нестандартный путь Большинство людей полагает, что линии должны оставаться в границах квадрата и проходить через центры точек

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже