Применим теперь формулу
Мы еще вернемся к понятию статистической значимости. Однако сначала стоит повторить логику анализа с использованием t-критерия, поскольку она применима в отношении ряда других статистических критериев. Как отмечалось, эта логика действительно довольно очевидна и сводится к трем правилам, основанным на простом здравом смысле:
1. Случайность больших различий между группами менее вероятна, чем случайность небольших различий. Поэтому разница между большинством других значений среднего арифметического из табл. 7.2 (например, между 3-летними девочками и 3-летними мальчиками) слишком мала, чтобы дать существенный t-показатель, и поэтому, скорее всего, объясняется случайностью.
2. Чем меньше внутригрупповая изменчивость, тем меньше вероятность того, что различия являются результатом случайности. Небольшое число существенных отклонений от группового среднего в ту или иную сторону практически не отражается на значении среднего арифметического. Этот фактор играет роль при сравнении результатов 3- и 4-летних мальчиков. Несмотря на существенную разницу между средними показателями, сравнение с использование f-критерия
говорит об отсутствии значимых различий, в немалой степени из-за высокой изменчивости в группе 4-летних мальчиков.
3. Наконец, вероятность случайности различий, обнаруженных в больших выборках, меньше, чем вероятность случайности таких же различий в небольших выборках. Если количество испытуемых невелико, один или два крайне высоких или крайне низких показателя могут исказить среднее арифметическое; в больших выборках такие случайные колебания компенсируются. Этот фактор играет роль при сравнении результатов 3-летних и 4-летних мальчиков. Если бы объем выборки составлял 30, а не 15 человек на группу, то полученный показатель
Из сказанного выше следует, что цель использования статистических процедур, основанных на логических построениях, — установление статистической значимости. Важно ясно представлять, что подразумевается, а также, что
Вспомним для начала, что выводы, основанные на логических статистических показателях, носят вероятностный характер. Утверждение, что определенное различие средних статистически значимо, означает, что такое различие
Второй тип ошибки состоит в принятии нуль-гипотезы тогда, когда в действительности имеется истинный эффект. Этот тип ошибки называется ошибкой второго рода. В исследовании агрессии мы допустили бы ошибку второго рода, если бы группы 3-летних и 4-летних детей различались, но мы заключили бы, что между ними нет различий. Вероятность ошибки второго рода рассчитать труднее, чем вероятность ошибки первого рода, и здесь мы даже не будем пытаться объяснить этот расчет. Однако замечу, что вероятность одной ошибки находится в обратной зависимости от вероятности второй ошибки, то есть чем выше вероятность одной, тем ниже вероятность другой. Исследователь, к примеру, может снизить риск ошибки первого рода, установив уровень вероятности 0,01, однако в то же время он существенно повышает риск ошибки второго рода. Отметим также, что психологи предпочитают минимизировать вероятность ошибки первого рода. Эта осторожность в позитивных выводах отражена в общепринятой норме: «значимыми» признаются только результаты, вероятность случайности которых составляет менее 5 %'.