Значимость важна, но это лишь половина дела. Вспомним, что нас интересует не только существование связи, но и ее сила. Как правило, силу корреляционной связи интерпретируют с точки зрения точности прогноза; зная результаты испытуемого по одной переменной, насколько точно мы сможем предугадать его результаты по другой переменной? При корреляционном показателе, равном пулю, отношения между переменными носят случайный характер, и знание одного показателя не дает нам возможности предсказать другой показатель. По мере отклонения коэффициента корреляции от нуля его прогностическая способность возрастает, достигая максимума при коэффициенте корреляции равном ±1.
Другой (равноценный) способ рассмотрения корреляции — с точки зрения доли объясняемой дисперсии. Используя показатели по одной переменной для прогноза показателей по второй переменной, мы «объясняем», в статистически-прогностическом смысле, определенную долю дисперсии значения второй переменной. Чем выше коэффициент корреляции, тем большая доля дисперсии получает объяснение. Эту закономерность можно определить точнее. Если коэффициент корреляции — пйреоновский г, доля объясняемой дисперсии составляет/3
. Таким образом, коэффициент корреляции междуПоследнее из утверждений ограничивает нас в наших интерпретациях. Коэффициент корреляции равный 0,71 довольно высок, однако даже при таком значении половина дисперсии все еще не получает объяснения. С приближением коэффициента корреляции к нулю доля объясняемой корреляции уменьшается, и довольно стремительно. Коэффициент корреляции равный 0,5 объясняет 25% дисперсии, а коэффициент корреляции равный 0,3 — лишь 9% дисперсии.
Сказанное выше напоминает нам о разнице между значимостью и ценностью. Коэффициент корреляции может быть статистически значим, но в то же время столь мал, что его теоретическая или практическая ценность будет минимальна. Вероятность таких статистически значимых, но в действительности незначительных статистических показателей особенно велика при изучении больших выборок. В выборке объемом 50 коэффициент корреляции 0,27 достигает значимости на уровне 0,05. В выборке объемом 100 единиц значимостью обладает уже коэффициент корреляции 0,19.
Помимо объема выборки при оценке коэффициента корреляции важно учитывать диапазон значения переменных. Здесь могут возникнуть две проблемы. Чаще всего, это проблема, о которой говорилось в главе 46, сужение диапазона, которое происходит тогда, когда значения одной переменной так близки друг к другу, что разница между ними не связана с дисперсией значений других переменных. Предположим, сравнивая
детьми из классов для «одаренных». Как правило, отбор в эти классы производится по критерию
Возможно также, что диапазон значений переменной будет слишком широк. Допустим, от одного испытуемого к другому
Слишком узок или слишком широк диапазон значений, в основе проблемы лежит недостаточная внешняя валидность. Для того чтобы коэффициент корреляции был для нас интересен, он должен характеризовать не только выборку, для которой был подсчитан, но и всю популяцию, которую представляет эта выборка. Поэтому выборка должна быть репрезентативна — как по параметрам центральной тенденции, так и по параметру диапазона дисперсии — в отношении популяции, частью которой она является, Если выборка будет нерепрезентативна, полученные при ее изучении коэффициенты корреляции не будут обладать достаточной внешней валидностью.