Как и МДА, множественный регрессионный анализ — сложная статистическая процедура — сложная как для проведения, так и для описания. Как и в случае с МДА, на двух-трех страницах излагать суть процедуры множественного регрессионного анализа бессмысленно. Однако регрессионный анализ стал использоваться столь широко, что краткое рассмотрение его принципов представляется оправданным.
Говоря словами Керлингер (Kerlinger, 1986), множественный регрессионный анализ — «это метод изучения результатов влияния и силы влияния более чем одной независимой переменной на одну зависимую переменную с использованием принципов корреляционного и регрессионного анализа» (р. 527). Если выразиться несколько иначе, множественный регрессионный анализ дает нам информацию о том, как связаны две или более независимые переменные, или «предикторы», с одной зависимой переменной, или «критерием». Мы, к примеру, можем провести исследование, в котором будем изучать успешность выполнения, в лабораторных условиях некоего задания как функцию от
Между регрессионным и корреляционным анализом, описанным ранее в этой главе, существует тесная связь. В обоих случаях мы используем значение одной переменной у некоего испытуемого для предсказания значения другой переменной. Как следует из факта включения таких параметров, как
Много общего у регрессионного анализа и с дисперсионным анализом. Эти процедуры имеют одни и те же цели: определить влияние, совокупности независимых переменных на некую зависимую переменную, как по отдельности, так И во взаимодействии. Регрессионный анализ в предыдущем примере можно было бы заменить дисперсионным анализом четырех переменных, результатом которого было бы значение четырех
Если учесть широкие возможности множественного регрессионного анализа, можно задаться вопросом, какие факторы могут заставить нас предпочесть его ДА при анализе некой совокупности данных? Отмечу вначале, что зачастую это дело вкуса, поскольку во многих случаях оба подхода равно эффективны и информативны. Однако в некоторых отношениях множественный регрессионный анализ обладает преимуществом. Здесь я приведу два аргумента в пользу его использования.
1. Множественный регрессионный анализ особенно удобен в тех случаях, когда независимая переменная является непрерывной величиной, то есть включает широкое множество значений, а не просто несколько дискретных уровней. Пример непрерывной переменной —
2. Множественный регрессионный анализ особенно подходит для изучения вопроса, о котором уже говорилось вэтом разделе: определения силы влияния независимой переменной на зависимую. Основным статистическим показателем во множественном регрессионном анализе является