Начиная с 1890 года Пуанкаре публикует целую серию статей по теории опытов Герца, показавших существование предсказанных Максвеллом электромагнитных волн и возможность их получения с помощью простых приборов. А в 1899 году выходит в свет его книга "Теория Максвелла и герцевские колебания. Беспроволочная телеграфия". В этой работе, учитывая стремление широких кругов практиков приобщиться к физическим основам беспроволочной телеграфии и высокочастотных электрических колебаний, он в элементарной форме, без всяких расчетов разъясняет наиболее трудные вопросы. Как и других физиков, Пуанкаре интересует задача распространения волн вдоль проводов. Сам Герц решал ее в предположении бесконечно тонкого проводника. Такие известные ученые, как Д. Д. Томсон, лорд Рэлей, Друде и Пуанкаре, пытаются найти решение для более реальной задачи, в которой учитывается толщина провода. Пробовали было рассматривать электромагнитные волны по аналогии со звуковыми и световыми, но получили явное противоречие с опытом. Пуанкаре первый указал, что противоречия объясняются затуханием волн телеграфии. Причем затухание это вызвано двумя причинами: расходами энергии волны на излучение и на тепловой нагрев провода. Опыты как будто бы свидетельствовали, что преобладает второй механизм затухания.
Наибольшего успеха в этих теоретических исследованиях добиваются лорд Рэлей и Пуанкаре. Они рассматривают явление с общих позиций теории Максвелла, отводя основную роль изменению электромагнитного поля и влиянию на него проводников и заряженных диэлектриков. Это был совершенно новый подход для электротехников того времени, привыкших иметь дело лишь с расчетами разности потенциалов и силы тока в замкнутых электрических цепях с определенными сопротивлениями, индуктивностями и емкостями. Кирхгоф, один из основателей этой теории электрических цепей, применив старый проверенный метод и даже не принимая во внимание электромагнитное поле вокруг проводника, получил "телеграфное уравнение", описывающее распространение электромагнитных колебаний вдоль линии. Пуанкаре тоже вывел "телеграфное уравнение", но уже с чисто максвелловской точки зрения, имея дело с электромагнитными волнами вне проводника. Но его более строгий и более глубокий метод не выдержал конкуренции с методом Кирхгофа, хотя на основании этого метода лорд Рэлей еще до 1900 года предсказал техническое использование волноводов. Инженеры-электротехники предпочли более простой и более привычный им подход теории электрических цепей, отказавшись от всех богатств более тонкой, но более сложной теории. Они уподобились тому эфору из древней Спарты, который сорвал с музыкального инструмента две дополнительно введенные струны. Ему было неважно, что инструмент усовершенствован и дает новые аккорды. Он жаждал вернуться к привычному.
К тому же радиотехника вскоре облюбовала длинные волны, для которых классическая теория XIX века давала весьма удовлетворительную картину явлений, происходящих в приемниках и передатчиках, и представляла все результаты в знакомой и наглядной форме. Даже для расчета антенн и фидеров старая теория была вполне приемлемой. Почти тридцать лет все монографии и учебные пособия пропагандировали исключительно теорию электрических цепей, теорию прошлого века. Несколько поколений инженеров воспитывались на этих классических методах, не зная более строгих и точных. Лишь с развитием техники сверхвысоких частот, имевшей дело с дециметровыми и миллиметровыми волнами, проявилась несостоятельность широко применяемых теоретических средств. Только тогда обратились к уравнениям электромагнитного поля и к более сложным математическим методам. Пуанкаре смотрел слишком далеко вперед, его теория намного опережала происходящие события. В этом была ее сила, в этом была и ее слабость.
Еще одна его математическая формула завтрашнего дня была получена в исследованиях дифракции радиоволн проводящей сферой. Пуанкаре пытался объяснить явление распространения радиосигналов на большие расстояния. В мемуаре 1909 года он выводит основную формулу теории распространения радиоволн, устанавливающую закон угасания сигнала по мере удаления от источника колебаний. Математический метод, с помощью которого автор пришел к этому результату, вызвал оживленный обмен мнениями на страницах различных научных журналов того времени. Но только в середине XX века формула Пуанкаре для амплитуды дифрагированной волны была окончательно подтверждена исследованиями Ватсона.