Я уверен, что внезапный крах системы был спровоцирован в большей мере массовыми покупками, которые, по сути, на время разрушили перевес. Некоторые трейдеры используют любые повторяющиеся ситуации, которые замечают. Это один из поводов создать собственную систему, а с ее помощью хоть немного уменьшить вероятность того, что ваш перевес будет уничтожен эффектом трейдера: другие трейдеры не будут точно знать, когда вы собираетесь покупать, а когда – продавать.
Когда мы торговали для Рича, часто случалось так, что мы открывали сделки в одно и то же время. Трейдеры знали, что, когда от нас начинают поступать большие заявки, это может продлиться некоторое время, и начинали двигать рынок в определенном направлении. Это было рискованно для нас: мы использовали приказы с лимитами и в таких обстоятельствах могли не заключить нужных сделок, и нам пришлось бы отзывать приказы. Иногда, когда я планировал покупать и знал, что рынок отреагирует на шаги игроков, пытающихся сдвинуть его в направлении наших покупок, я посылал ложные приказы для обратных действий. А потом, когда рынок сдвигался, я отменял первоначальный приказ и размещал приказ с лимитом, близким к цене рынка или даже к оборотной стороне предложения. Например, если я хотел купить 100 контрактов, то сначала размещал ложный приказ на продажу. Если это был ложный приказ на продажу 100 контрактов по 415 долларов, а цены спроса и предложения на рынке составляли соответственно 410 и 412 долларов, наличие такого приказа могло сдвинуть цены к уровням 405 и 408 долларов. Затем я отменял ложный приказ и открывал сделку по покупке с лимитом 410 долларов и мог купить по 408 или 410 долларов, то есть по первоначальной цене спроса до моего первого приказа.
Такие вещи я делал нечасто, но это позволяло мне вводить других трейдеров в заблуждение относительно наших действий. Это похоже на блеф в покере. Вы не можете блефовать все время, иначе кто-нибудь вам ответит, примет игру и вы все потеряете. Однако если блефовать время от времени, можно выиграть, так как другие игроки, вступающие в игру в расчете на ваш блеф, могут существенно повышать ставки, не зная, что у вас на руках сильная карта. Порой, блефуя, можно сорвать весь банк.
Подобно тому как блеф вводит в заблуждение остальных игроков, Черепахи создавали путаницу тем, кто пытался вычислить стиль трейдинга Ричарда Денниса. Некоторые из нас использовали небольшие стопы, некоторые – большие. Кто-то покупал на прорыве, кто-то чуть раньше или чуть позже; в целом мы создавали дымовую завесу, что, возможно, помогало Ричу заключать больше сделок по нужным ценам.
Эффект трейдера может быть вызван не только сознательными попытками одних трейдеров опередить остальных. Если многие трейдеры пытаются использовать одну и ту же рыночную ситуацию, это может разрушить ее, хотя бы на время, так как их приказы «размоют» прорыв. Такая проблема чаще всего встречается в сделках арбитражного типа, где перевес обычно невелик.
Случайные эффекты
Большинство трейдеров не осознают степени, в которой результаты их работы могут зависеть от совершенно случайных факторов. А типичный инвестор осведомлен о ней еще меньше, чем типичный трейдер. Даже весьма опытные инвесторы, например управляющие и принимающие решения от имени пенсионных и хедж-фондов, в целом не понимают степени этого эффекта. Результаты могут колебаться в фантастических пределах из-за полностью случайных событий. Величина колебаний в серии исторических тестов, включавших случайные события, была удивительно высокой. В этом разделе мы изучим возможности, возникающие вследствие воздействия случайных факторов при долгосрочном следовании трендам.
Обсуждая Е-ratio, я проделал симуляцию модели со случайными входами в короткую или длинную позицию, используя компьютер для генерирования того или иного решения, «бросания монетки». Я создал симуляционную систему, в которой совмещались случайные входы с выходами через определенные промежутки внутри диапазона от 20 до 120 дней. После этого я провел 100 тестов с теми же данными, которые в главе 10 использовались для сравнения стратегий следования трендам. Лучший тест в модели продемонстрировал результат 16,9 процента и превратил 1 миллион долларов примерно в 5,5 миллиона за 10,5 лет теста. Худший тест терял по 20 процентов ежегодно. Это показывает, что в данных ситуациях многовариантность возможна исключительно за счет случайных событий.