Читаем Путешествие через эпохи полностью

В целом беседа с Лобачевским производила двойственное впечатление. Прежде всего впечатление невероятной мощи научного прогноза. Мыслитель XIX века говорил о проблемах науки ХХ века, которая, обретая связь с «вопрошающей» тенденцией прошлого, получала в его устах еще большее «внутреннее совершенство». Это была живая и глубоко оптимистическая демонстрация непрерывности и преемственности духовной эволюции человечества. Демонстрация действительной реальности машины времени, действительной переклички эпох. Но впечатление было и трагическим. Лобачевский подходил к новым применениям своей геометрии, к новым представлениям о пространстве, о познании, о реальности, но он был измучен одиночеством и болезнями. Мне хотелось что-нибудь сделать для моего великого собеседника, и я сделал, что мог: рассказал ему о развитии физической геометрии, о теории относительности, о неэвклидовости четырехмерного пространства-времени. Рассказал в виде предположения о дальнейшем развитии науки. Впрочем, Лобачевского не интересовали истоки моих представлений о судьбе неэвклидовой геометрии. Он видел в моем рассказе неоднозначный прогноз, но вероятный. В данном случае, как и во многих других, прогноз будущего меняет оценку настоящего. Неэвклидова геометрия становится геометрией мира, геометрией вселенной. Мысли Лобачевского о физических эквивалентах неэвклидовой геометрии приобретали для него то, что Эйнштейн назвал впоследствии «внешним оправданием». Правда, для Лобачевского это оправдание казалось еще только предположением. Но такая принципиальная возможность была для него большой радостью. Он ощущал возможное в будущем торжество физической геометрии как торжество своего научного подвига и как подтверждение своих исходных идей, выходивших за рамки геометрии.

Физический смысл неэвклидовой геометрии при такой ее связи с физикой представляет собой нечто противоположное кантианскому априорно-субъективному пониманию пространства-времени. У Канта инвариантом познания оказывается сознание человека. У Лобачевского, напротив, инварианты познания становятся отображениями инвариантов бытия.

Неклассическая наука весьма отчетливо показала физико-геометрический характер перехода от обычных масштабов к космическим. Мысль Лобачевского о новой геометрии как более точном отображении микромира реализовалась в неклассической науке более сложным образом. Здесь преобразуются не только геометрические аксиомы, но и логические нормы.

Что же остается неизменным, тождественным себе? Каковы инварианты познания, недоступные преобразующему воздействию исторически развивающейся науки, в том числе неклассической науки ХХ века? Этот вопрос я решил задать Эйнштейну и задал его в марте 1955 года, за три недели до смерти ученого. Мы сидели в кабинете Эйнштейна перед раскрытым окном, глядя на едва распустившиеся листья весеннего сада.

— Я думаю, — ответил Эйнштейн, — такие инварианты существуют, и насколько можно предвидеть развитие науки, они сохранятся. Это представления о связи вселенной и элементарных частиц вещества. Представления о вселенной и представления об элементарных частицах меняются, но их связь всегда остается основой науки. Не всегда явной. Долго думали, что прогресс науки состоит в поисках совсем простых элементов бытия. Но каждый шаг в этих поисках, как правило, менял представление о целом, а сейчас будущее, по-видимому, принадлежит тому направлению, которое объясняет структуру космоса событиями в мире элементарных частиц, а признаки элементарных частиц объясняет как результат их взаимодействия с космосом. Вы помните, мы говорили об этом лет десять назад, и я писал нечто подобное в своей автобиографии 1949 года — о существенном недостатке теории относительности: она исходит из некоторых особенностей поведения часов и линеек, то есть из допущения свойств пространства и времени, не давая им атомистического объяснения. Я надеялся, что этот недостаток будет преодолен в единой теории поля. Наблюдая современные трудности теории элементарных частиц, я начинаю думать, что эти трудности, в свою очередь, будут преодолены интервенцией представлений о пространстве и времени в целом, их интервенцией в картину микромира.

— Интервенция представлений о бесконечном пространстве и времени?

— Да. Как мне кажется. К счастью, современное понятие бесконечности ушло очень далеко от непредставимого и противоречивого, традиционного понятия бесконечности. В электродинамике условия бесконечности — это условия на расстоянии нескольких метров, а, может быть, и сантиметров. Для дифференциального исчисления любая конечная величина бесконечна. В данном случае бесконечный космос, описывается ли он открытой или закрытой моделью, будет ли он конечным или бесконечным по своему радиусу и объему, все равно в отношении элементарных частиц он представляется бесконечным. Условия на его границах можно рассматривать как условия на бесконечности. Соответственно и элементарные частицы, независимо от их радиуса, играют роль бесконечно малых в макроскопических представлениях и даже в атомной физике.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже