Для посадки межпланетного корабля на Луну или другое небесное тело, не обладающее атмосферой, но имеющее собственное поле тяготения, нужно погасить скорость корабля относительно этого тела торможением с помощью двигателя.
На строго определенном, заранее рассчитанном расстоянии от поверхности небесного тела нужно включить двигатель корабля, для того чтобы сила реакции струи вытекающих из него газов постепенно снизила скорость корабля до нуля. Если торможение начнется слишком рано, на большом расстоянии от посадочной площадки, то это приведет к значительному перерасходу топлива. Теоретически было бы выгодно погасить всю скорость корабля сразу, чтобы корабль внезапно остановился у самой поверхности планеты, но это, конечно, невозможно, и поэтому при торможении также должны быть использованы максимально допустимые инерционные перегрузки.
Если планета обладает атмосферой, хотя бы даже разреженной, то значительная часть общего торможения корабля при посадке может быть осуществлена путем использования сопротивления, которое оказывает эта атмосфера летящему кораблю. Разреженность атмосферы не служит большим препятствием, ибо торможение происходит на значительных высотах, где давление все равно невелико. Так, например, атмосфера Марса намного разреженней земной, и давление у поверхности Марса соответствует земному давлению на высоте 15–16 километров. Но уже на высоте примерно 28–30 километров давления в марсианской и земной атмосферах одинаковы, а на еще больших высотах давление в атмосфере Марса становится даже больше земного. Поэтому торможение в атмосфере при посадке на Марс вполне возможно. Таким образом может быть сэкономлено значительное количество топлива, но…
Но такая посадка — это в буквальном смысле слова игра с огнем, ибо незначительная ошибка в расчете, ошибка пилота — и корабль может вспыхнуть ярким факелом, так что в лучшем случае поверхности планеты достигнут обугленные и оплавленные остатки того, что было кораблем Вселенной. Судьба метеоров, как говорят, «сгорающих» в атмосфере, то есть разрушающихся в ней под ударами молекул воздуха, встанет грозным призраком перед командиром межпланетного корабля, осмелившимся на риск подобной посадки.
[118]И все же возможность такой посадки нельзя не использовать. Точные знания науки в сочетании с безошибочным автоматическим управлением должны сделать эту посадку абсолютно безопасной.С явлением нагрева в полете приходится считаться уже сейчас в скоростной авиации. Этот нагрев происходит в результате того, что мчащийся с большой скоростью самолет набегает на неподвижный воздух и сжимает его. Эффект получается такой же, как если бы поток воздуха с большой скоростью набегал на неподвижную поверхность и внезапно останавливался, тормозился этой поверхностью. Кинетическая энергия воздушного потока при таком торможении переходит в тепло, которое подводится к поверхности самолета, увеличивая ее температуру. При малых скоростях полета нагрев практически отсутствует — как известно, кабины самолетов приходится даже искусственно обогревать, потому что на больших высотах царит сильный мороз. По мере роста скорости аэродинамический нагрев самолета становится все б'oльшим
[119] наконец он не только устраняет необходимость в отоплении кабины, но становится столь значительным, что приходится скорее думать о ее охлаждении.Уже сейчас в кабинах скоростных реактивных самолетов в некоторых случаях температура поднимается до 100° и более.
Тут, очевидно, уже никакой тренировкой делу не поможешь. Проблема охлаждения кабины летчика становится очень грозной.
Нагрев самолета при полете в воздухе заставляет подумать не только о летчике, но и о самом самолете. Как известно, самолеты строятся из легких и прочных сплавов алюминия и магния. Но прочность таких сплавов очень быстро уменьшается с ростом их температуры. Применять нагруженные детали из этих сплавов можно только до сравнительно невысоких температур, не превышающих примерно 200°. Поэтому дальнейшее увеличение скорости полета с соответствующим увеличением нагрева самолета может заставить отказаться от применяющихся теперь в самолетостроении легких сплавов и перейти на другие, более жаропрочные, но, увы, и более тяжелые материалы.
Вот почему на новейших скоростных самолетах начинают все шире применяться сплавы титана, легкие и сохраняющие прочность при гораздо более высоких температурах. Не зря титан называют иногда металлом будущего в авиации. Вот почему некоторые новейшие самолеты построены из нержавеющей стали. Вот почему в кабинах некоторых из таких самолетов установлены рефрижераторные, холодильные, установки для охлаждения летчика, а заодно и важнейших частей самолета. Подобные установки мало похожи на комнатные холодильники. Их холодопроизводительность достаточна, чтобы охладить в жаркий день средних размеров театр, создав в нем приятную прохладу.
[120]