Читаем Путешествие от частицы до Вселенной. Математика газовой динамики полностью

К этому же выводу пришел и Больцман, которому удалось доказать, что энтропия пропорциональна логарифму числа микросостояний, умноженному на его известную постоянную. Логарифм обозначается как log и является обратным экспоненте. Например, выражение log3 говорит нам, в какую степень мы должны возвести число 10, чтобы получить 3. Математически энтропия Больцмана выражается следующим образом:

S = k·logW,

где S — энтропия, — постоянная Больцмана и — число микросостояний.


Энтропия как хаос


В популярной литературе часто встречается объяснение энтропии как хаоса. Теперь, когда мы знаем связь между энтропией и числом микросостояний, мы можем понять, почему это происходит. Самый простой способ увидеть это — обратить внимание на доску, покрытую шашками.

Предположим, что мы ставим шашки в порядке, как показано на рисунке.



Каково сейчас число микросостояний, совместимых с этой конфигурацией? Чтобы найти его, воспользуемся рассуждениями из области комбинаторики, подобными приведенным в предыдущей главе. У нас 32 черные клетки и столько же белых. Мы ставим первую черную шашку на любое белое поле; для следующей есть только 31 вариант, и так далее. Следовательно, существует всего 32! способа распределить черные шашки, если считать, что они отличаются друг от друга. Точно так же есть 32! способа распределения белых шашек, так что всего у нас 32!·32! способов установить шашки, чтобы получить вышеуказанную конфигурацию.

Остальные конфигурации будут более беспорядочными, чем эта, поскольку нет никаких ограничений, связанных с тем, как следует располагать шашки. Например, конфигурации, показанные ниже, более беспорядочны, чем предыдущая.



Вычислим общую сумму возможных конфигураций всех шашек. Поскольку нам все равно, белая шашка или черная и где она находится, рассмотрим их все одновременно. Для первой у нас будет 64 возможности, для второй — 63, и так далее.

Итак, общее число конфигураций равно 64! Вероятность получения упорядоченной конфигурации равна числу упорядоченных конфигураций, разделенному на общее число конфигураций:


Как видите, упорядоченное положение имеет очень малую вероятность, а хаотичные состояния, напротив, очень вероятны. Поскольку состояния, характеризующиеся высокой энтропией, а также хаотичные состояния имеют очень высокую вероятность, мы можем связать их друг с другом и заключить, что состояния высокой энтропии более хаотичны.


Энтропия как непредсказуемость


Как мы только что увидели, энтропия пропорциональна числу микросостояний, характерных для макросостояния, в котором находится система. Однако даже зная макросостояние, мы не можем знать микросостояние, и чем выше энтропия системы, тем ниже ее предсказуемость. Предположим, что у нас есть система с 1000 различных микросостояний. Если мы знаем, что в этот момент она находится в первом, мы можем быть уверены только в том, что в следующий момент она будет находиться в одном из других 999. Но если у нас есть система только из десяти состояний, мы знаем, что есть только девять возможностей, начиная с текущего момента, то есть такая система более предсказуема.

Можем пойти еще дальше и задать вопрос, какова минимально возможная энтропия для любой системы и какому количеству микросостояний она соответствует.

Вспомним, что энтропия равна:

S = k·logW,

где функция log — это логарифм, функция, обратная экспоненте. Предположим, что у нас только одно микросостояние: в этом случае логарифм единицы равен нулю, поскольку любое число, возведенное в нулевую степень, равно единице. Итак, энтропия одного микросостояния равна нулю. С точки зрения непредсказуемости это справедливо: нет более предсказуемой системы, чем та, у которой только одно состояние. Ее непредсказуемость точно равна нулю.


Энтропия как степень неосведомленности


Есть и другой способ понимания энтропии, который может быть адаптирован для применения за пределами физики — в рамках теории информации. Речь идет о понимании энтропии как недостающей информации о системе, то есть о степени нашей неосведомленности.

Как было видно в предыдущей главе, обычно мы знаем давление, температуру и объем газа, но при этом не знаем всего остального, то есть мы обладаем смехотворным количеством информации, необходимой для описания состояния системы.

Пусть даже эта информация — единственно значимая для прогнозирования, но она остается крайне малой по сравнению со всей информацией о рассматриваемом газе. Главную роль в способе описания энтропии снова играет число доступных микросостояний. Если в системе миллион состояний и мы не знаем, в каком из них она находится, степень нашей неосведомленности намного больше, чем если бы в ней было только десять состояний. Итак, мы знаем о системе с высокой энтропией намного меньше, чем о системе с низкой энтропией.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика