К этому же выводу пришел и Больцман, которому удалось доказать, что энтропия пропорциональна логарифму числа микросостояний, умноженному на его известную постоянную. Логарифм обозначается как log и является обратным экспоненте. Например, выражение log
3 говорит нам, в какую степень мы должны возвести число 10, чтобы получить 3. Математически энтропия Больцмана выражается следующим образом:где
В популярной литературе часто встречается объяснение энтропии как хаоса. Теперь, когда мы знаем связь между энтропией и числом микросостояний, мы можем понять, почему это происходит. Самый простой способ увидеть это — обратить внимание на доску, покрытую шашками.
Предположим, что мы ставим шашки в порядке, как показано на рисунке.
Каково сейчас число микросостояний, совместимых с этой конфигурацией? Чтобы найти его, воспользуемся рассуждениями из области комбинаторики, подобными приведенным в предыдущей главе. У нас 32 черные клетки и столько же белых. Мы ставим первую черную шашку на любое белое поле; для следующей есть только 31 вариант, и так далее. Следовательно, существует всего 32! способа распределить черные шашки, если считать, что они отличаются друг от друга. Точно так же есть 32! способа распределения белых шашек, так что всего у нас 32!·32! способов установить шашки, чтобы получить вышеуказанную конфигурацию.
Остальные конфигурации будут более беспорядочными, чем эта, поскольку нет никаких ограничений, связанных с тем, как следует располагать шашки. Например, конфигурации, показанные ниже, более беспорядочны, чем предыдущая.
Вычислим общую сумму возможных конфигураций всех шашек. Поскольку нам все равно, белая шашка или черная и где она находится, рассмотрим их все одновременно. Для первой у нас будет 64 возможности, для второй — 63, и так далее.
Итак, общее число конфигураций равно 64! Вероятность получения упорядоченной конфигурации равна числу упорядоченных конфигураций, разделенному на общее число конфигураций:
Как видите, упорядоченное положение имеет очень малую вероятность, а хаотичные состояния, напротив, очень вероятны. Поскольку состояния, характеризующиеся высокой энтропией, а также хаотичные состояния имеют очень высокую вероятность, мы можем связать их друг с другом и заключить, что состояния высокой энтропии более хаотичны.
Как мы только что увидели, энтропия пропорциональна числу микросостояний, характерных для макросостояния, в котором находится система. Однако даже зная макросостояние, мы не можем знать микросостояние, и чем выше энтропия системы, тем ниже ее предсказуемость. Предположим, что у нас есть система с 1000 различных микросостояний. Если мы знаем, что в этот момент она находится в первом, мы можем быть уверены только в том, что в следующий момент она будет находиться в одном из других 999. Но если у нас есть система только из десяти состояний, мы знаем, что есть только девять возможностей, начиная с текущего момента, то есть такая система более предсказуема.
Можем пойти еще дальше и задать вопрос, какова минимально возможная энтропия для любой системы и какому количеству микросостояний она соответствует.
Вспомним, что энтропия равна:
где функция log
— это логарифм, функция, обратная экспоненте. Предположим, что у нас только одно микросостояние: в этом случае логарифм единицы равен нулю, поскольку любое число, возведенное в нулевую степень, равно единице. Итак, энтропия одного микросостояния равна нулю. С точки зрения непредсказуемости это справедливо: нет более предсказуемой системы, чем та, у которой только одно состояние. Ее непредсказуемость точно равна нулю.Есть и другой способ понимания энтропии, который может быть адаптирован для применения за пределами физики — в рамках теории информации. Речь идет о понимании энтропии как недостающей информации о системе, то есть о степени нашей неосведомленности.
Как было видно в предыдущей главе, обычно мы знаем давление, температуру и объем газа, но при этом не знаем всего остального, то есть мы обладаем смехотворным количеством информации, необходимой для описания состояния системы.
Пусть даже эта информация — единственно значимая для прогнозирования, но она остается крайне малой по сравнению со всей информацией о рассматриваемом газе. Главную роль в способе описания энтропии снова играет число доступных микросостояний. Если в системе миллион состояний и мы не знаем, в каком из них она находится, степень нашей неосведомленности намного больше, чем если бы в ней было только десять состояний. Итак, мы знаем о системе с высокой энтропией намного меньше, чем о системе с низкой энтропией.