Окончательная формулировка принципа наименьшего действия принадлежит Лагранжу и Гамильтону. С одной стороны, эти ученые переформулировали принцип Эйлера таким образом, чтобы он работал во всех случаях. С другой стороны, Лагранж и Гамильтон разработали новые математические методы для решения уравнений, которые следуют из этого принципа.
Ими было введено математическое понятие, названное
Значение лагранжиана различно для каждого промежутка времени движения частицы. В случае с камнем, брошенным вверх, его кинетическая энергия сначала уменьшается, пока не достигнет верхней точки, где становится нулевой, а затем снова увеличивается по мере того, как камень падает. Потенциальная энергия, в свою очередь, увеличивается, пока камень поднимается, а во время падения уменьшается.
* * *
Он был одним из самых значительных математиков XVIII века. Среди заслуг Лагранжа — разработка вариационного исчисления, математического инструмента, позволяющего найти функцию, на которой заданный функционал достигает максимального или минимального значения. Методы Лагранжа до сих пор широко используются в физике, математике и даже в экономике, где найти максимальные значения некоторых величин, таких как выгода, очень важно. Помимо вклада в базовую науку, Лагранж стал одним из инициаторов внедрения метрической системы. Считается, что именно ему принадлежит идея выбрать килограмм и метр в качестве международных единиц.
Несмотря на закрытый характер, Лагранж пользовался большим признанием: он провел два десятилетия в Берлине, где
* * *
Лагранжиан можно вычислить в каждый промежуток времени, вычтя потенциальную энергию из кинетической. Все три случая показаны на графиках.
Этот математический объект оказался ключевым элементом, которого не хватало для дополнения принципа наименьшего действия, потому что его можно было использовать, имея в виду как кинетическую, так и потенциальную энергию. В новой формулировке утверждалось, что любое тело движется таким образом, что лагранжиан уменьшается как можно быстрее. За этой внешней простотой кроется удивительная способность прогнозировать движение любой классической системы, то есть любой системы, для описания которой нет необходимости прибегать к законам квантовой механики.
Кроме того, формула Лагранжа имеет еще два преимущества: во-первых, она подходит для любой системы координат, и это решило проблему уравнений Ньютона, применимых только для прямоугольной системы координат; во-вторых, эту формулу совершенно свободно можно применить к произвольному числу частиц.
Новая математика открыла для физиков новые возможности, поскольку теперь ученые уже не были ограничены изучением только простых систем, но могли обратить внимание на до сих пор не решенные задачи. Хотя формулировка Лагранжа соответствует законам Ньютона, на практике она позволяет максимально расширить действие этих законов. Изучение таких сложных систем, как газ, было бы невозможным без лагранжевой механики.