Читаем Путешествие по Карликании и Аль-Джебре полностью

На зелёное поле выбежали три буквы Цэ. Все они были в белых поварских колпаках, у каждой палка, а на палке кольца — похоже на детские пирамидки. Только там кольца разноцветные, одно другого меньше, а здесь одинаковые, золотистые, как толстенькие поджаристые бублики.

Это и впрямь были бублики с маком! У одного пекаря — два бублика, у другого — три. У третьего колец на палке не было.

Заиграла музыка.

Первый пекарь снял с палки верхнее кольцо и ловко метнул. Кольцо очертило в воздухе плавную дугу и угодило на пустую палку третьего пекаря. Вслед за первым кольцом туда же полетело второе. То же самое сделал другой пекарь, и вот уже у третьего пекаря на палке все пять колец, а первые два пекаре остались ни с чем.

Потом жонглёры перестроились. Теперь у одного на палке было три кольца, у другого — шесть, у третьего опять ничего. Снова заиграла музыка, замелькали кольца. И опять у третьего пекаря на палке — девять бубликов, а у других — ничего.

— Чистая работа, — сказал Дэ, — ни одно колечко не упало.

— Работа-то чистая, но при чём здесь умножение степеней? — спросил я. — Не понимаю.

— А я понимаю, — похвасталась Таня. — При перемножении степеней показатели надо складывать:


с3 • с6 = с3+6 = с9.


Совершенно правильно, — подтвердил Дэ. — Число колец на палке обозначает показатель степени.

— Пусть, — сказал я, — а мне всё равно непонятно.

— Поглядите на поле, — предложил Дэ, — тогда уж обязательно поймёте.

Я поглядел и увидел, что два Цэ (у одного, на палке три кольца, у другого — шесть) стали рядом и между ними появился знак умножения — точка. И тут на поле выбежали ещё девять Цэ.

У них на палках было только по одному кольцу. Трое из них встали на место Цэ с тремя кольцами, а шестеро заменили Цэ с шестью кольцами. Тогда пекарь с пустой палкой отделился от них знаком равенства и стал следом за ними. А первые два пекаря отдали ему свои кольца и получилось вот что:



 На этот раз и вправду все было понятно: Цэ в третьей степени, умноженное на Цэ в шестой, — это все равно, что Цэ, умноженное само на себя девять раз, или попросту Цэ в девятой степени.

 Потом началось деление степеней. На поле выкатили двухэтажную тележку. На верхнюю площадку вскочил жонглер с тремя кольцами на палке — числитель, на нижнюю — жонглер с двумя кольцами — знаменатель. 



И вдруг Цэ стали лопать свои бублики: числитель съест один, и знаменатель — один, числитель — один, и знаменатель — один… Когда Цэ знаменатель съел все свои бублики, он исчез. На площадке осталась только его палка.

А Цэ-числитель — у него на палке ещё болтался один бублик — продолжал стоять наверху как ни в чём не бывало.



— Ясно, — сказал Олег. — Деление — действие, обратное умножению. Значит, показатели степеней надо при этом не складывать, а вычитать.

— Верно! — поддержала Таня. — Из трёх бубликов отняли два. В знаменателе очутилась палка-единица, А в числителе — Цэ с одним бубликом, то есть Цэ в первой степени.

— Первая степень не пишется, — вспомнил я. — Стало быть, просто Цэ:


с3/c2= с3-2 = c


— Вот вам и частное от деления двух степеней, — пояснил Дэ. — Посмотрим теперь, что будет, если Цэ в квадрате разделить на Цэ в кубе.

Теперь на верхней площадке стоял Цэ-числитель с двумя бубликами, а на нижней Цэ-знаменатель с тремя. Опять они принялись уплетать, но теперь уже без бубликов оказался Цэ-числитель. Он исчез, оставив на площадке свою палку. А Цэ-знаменатель, у которого оставался один бублик, продолжал стоять на площадке.

— Видите, — сказал Дэ, — частное от деления равно единице, делённой на Цэ, или одной цэтой, как у нас говорят.

— Позвольте, — вмешался Олег, — при делении степеней показатели вычитаются. Значит, это можно изобразить так.


с2/с3 = с2-3 = с-1



— Ой! — испугалась Таня. — Получилась отрицательная степень!

— Вполне законно, — возразил Дэ. — Одна цэтая — это то же самое, что Цэ в минус первой степени.

Вон оно что! Выходит, если целое число возвести в отрицательную степень, оно превращается в дробь:


с-1 = (1/с)1 = 1/с


с-2 = (1/с)2 = 1/с2


с-3 = (1/с)3 = 1/с3


и так далее.

Слышишь, Нулик? Ты, помнится, хотел знать, отчего гирька твоего силомера не желала подниматься выше единицы? Вот тебе и ответ. Возвести пять в минус вторую степень — всё равно что возвести одну пятую в плюс вторую степень:


5-2 = (1/5)2 = 1/25


Иначе и быть не может. Ведь у отрицательных чисел всё наоборот! И чем большее число возводишь в отрицательную степень, тем меньше получается дробь. Потому-то тысяча, возведённая в минус третью степень, оказалась равной одной миллиардной:


(1000)-3 = (1/1000)3 = 1/1 000 000 000 = 0,000 000 001


А теперь слушай дальше. В числителе и знаменателе очутились Цэ с тремя бубликами.



Каждый Цэ съел свои бублики и скрылся. На площадках остались только их палки.



— Вот так фокус! — не удержался я.

— Ну, что вы! — скромно сказал Дэ. — Это просто деление двух одинаковых степеней с равными основаниями. И получается при этом единица, делённая на единицу.

— Или просто единица, — добавила Таня.

Перейти на страницу:

Все книги серии Математическая трилогия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное