— Великолепно! — воскликнул фокусник. — Вы попали в самую точку. Итак, размещаю на палке не числа, а буквы. Каждый член прогрессии обозначаю буквой
Фокусник подал знак, и буквы
— Внимание! Приступаю к выводу формулы. В этом ряду под
— Ну конечно, — сказал Сева, — так же как и под всеми остальными.
— Думайте, думайте, молодой человек! — возразил фокусник. — Ведь все эти
И так до конца прогрессии. Понятно?
— Понятно, понятно! — закричали все.
— Продолжаю! Надеюсь, все заметили, что в этой прогрессии восемь членов. Или четыре пары. Сумму крайних членов записываю так:
Обозначаю сумму всех членов большой латинской буквой Эс — S. Ведь слово «сумма» начинается с этой буквы! Значит,
Кто-то спросил:
— А если в прогрессии десять членов? Как тогда вычислить сумму?
— Точно так же, — ответил фокусник. — Только пар станет уже не четыре, а пять, и последний член прогрессии будет
— Стало быть, это справедливо для любого числа членов? — не унимался дотошный зритель.
— Какое число членов вам угодно сложить?
— Пять! Двадцать! Сто семьдесят пять! Двести сорок! Миллион семьсот тысяч! — неслось со всех сторон.
Фокусник закрыл уши руками:
— Тише, тише! Сейчас все ваши просьбы будут исполнены.
Он подождал, когда все успокоятся, и снова заговорил:
— Обозначаю число членов буквой Эн —
Не трудно догадаться, что число пар будет в два раза меньше числа n, то есть n/2 . Вот и выходит, что сумма членов запишется так:
— Разрешите спросить, — сказал Олег, — если число членов прогрессии нечётное, как вы его разобьёте на пары?
— А уж над этим вы подумайте сами. Но поверьте честному слову фокусника — формула нисколько не изменится.
Он ещё раз сложил свою палку, и она тут же исчезла. Все захлопали, засмеялись. Фокусник тоже сложился пополам и исчез так же неожиданно, как его палка.
Вот какие фокусы показывают в Аль-Джебре.
Последняя калитка
Здравствуйте, ребята! Письмо Тани нам ужасно понравилось. И все мои ученики сразу захотели стать фокусниками. Но я сказал, что фокусником буду я, а они — моими ассистентами. Их дело — сидеть на палке.
Сначала на палке никто сидеть не хотел. А когда я их уговорил, оказалось, что сидеть не на чем. Потому что мы нигде не могли найти палку, которая складывается.
Я очень расстроился, а все, наоборот, обрадовались и побежали кататься на калитке. Это
Ну, я тоже поплёлся. Все стали кататься, а я стоял в сторонке и смотрел. А потом догадался: вот она, палка, которая складывается! То есть не палка, а забор с калиткой. Ведь калитка, если её открыть, доходит до самого забора! А забор сделан из редких поперечных планок. В калитке четыре поперечные планки. Отсчитать ещё четыре на заборе. Выбрать восемь ассистентов — на каждой планке по одному — и открыть калитку до самого конца. Моё предложение понравилось. На палке не хотел сидеть никто, зато на заборе захотели — все. Чтобы не было скандала, я отобрал восемь ассистентов по порядку: Единицу, Двойку, Тройку, Четвёрку, Пятёрку, Шестёрку, Семёрку и Восьмёрку.
Сказать по правде, я думал, что это никакая не прогрессия, а натуральный ряд чисел, но у меня другого выхода не было, иначе все бы передрались.
Числа стали на планки. Несколько других ассистентов ухватились за калитку. Я взмахнул рукой, калитка со страшным скрипом поехала к забору… И вот уже у нас получились четыре пары чисел:
Сложили каждую пару — получилось девять. Вот так штука! Выходит, я сделал открытие: натуральный ряд чисел тоже прогрессия. И разность её равна единице.
Я сложил все числа натурального ряда от единицы до двухсот. Прямо в уме! Вот где мне пригодилась формула фокусника.
Первый член прогрессии