Читаем Путешествие по Карликании и Аль-Джебре полностью

Тут они нам и объяснили. Дело в том, что собранные продукты они не складывают, а перемножают. То есть не продукты, конечно, а количество их.

Один, скажем, снял с грядки четыре килограмма огурцов, а другой опять-таки девять:

4 9=36.

Ты небось думаешь, что тридцать шесть надо разделить на два; А вот и нет. Обжоры среднегеометрические и тут поступают по-своему Они не делят, а извлекают из полученного произведения корень. Да, да не удивляйся: у чисел есть корни, и их можно извлекать. Об этом нам ещё в прошлый раз рассказала Тройка с чемоданчиком на проспекте Действующих Знаков. Эти самые знаки высыпались у неё из чемоданчика прямо на асфальт.

Помножь три на три. Получится девять. Знаешь, что ты сделал? Ты возвёл три во вторую степень. Если же ты хочешь возвести три в третью степень, помножь его само на себя три раза. Получится двадцать семь. Пятая степень трёх будет уже двести сорок три…

Так можно возвести число и в сотую, и в двухсотую, и в какую хочешь степень.

А теперь ответь на такой вопрос: какое число нужно возвести во вторую степень, чтобы получить девять? Разумеется, три. Вот это три и есть корень второй степени из девяти.

Стало быть, извлечение корня — действие, обратное возведению в степень. Совсем как вычитание — действие, обратное сложению, а деление — умножению.

Так вот, из числа тридцать шесть среднегеометрические обжоры извлекают корень квадратный, иначе говоря, корень второй степени. Получается шесть.

Выходит, каждому обжоре досталось по шести килограммов огурцов. Это на полкило меньше, чем получил бы обжора среднеарифметический. Но зато при такой делёжке один килограмм остаётся в запасе: 13–12=1.

Тут мне пришло в голову, что обжор среднегеометрических тоже ведь не двое, а гораздо больше.

— Ну и что ж, — ответили мне, — каждый соберёт своё количество килограммов, мы все эти числа перемножим.

— И извлечёте корень второй степени? — перебил я.

— Что вы, что вы, — возмутились обжоры, — мы извлечём корень той степени, сколько у нас жителей!

Таня поинтересовалась, как обжоры обозначают такое действие.

Как? Да очень просто: закорючкой, которая похожа на сачок для ловли бабочек и называется радикалом. Только над сачком порхает не бабочка, а число, обозначающее степень корня. И называется оно показателем корня:

Если в посёлке четверо обжор, извлекается корень четвёртой степени:

Ну, а если сто четыре? Тогда и корень будет сто четвёртой степени:

Ты небось хочешь знать, почему это над радикалом не ставится двойка, когда извлекается корень квадратный? Почему, почему… Просто так уж условились.

Из всего, что мы увидели в Обжорах, мы с Таней поняли, что среднее арифметическое всегда больше среднего геометрического. Но Олег сообразил, что вовсе не всегда. Если бы жители Обжор собирали все до одного одинаковый урожай, среднее геометрическое и среднее арифметическое тоже были бы совершенно одинаковы. Не веришь? Я тоже начала не поверил. Но Олег доказал.

Допустим, двое собрали по восьми килограммов огурцов. Среднее арифметическое найдётся так:

А среднее геометрическое так:

Вещий Олег!

Среднегеометрические обжоры долго нас не отпускали. Да и нам не хотелось расставаться с такими гостеприимными хозяевами. Но стручок в кармане у Олега так разбушевался, что нам пришлось попрощаться.

Все высыпали нас провожать. Каждый тащил на дорогу что под рукой: кто помидоров, кто яблок… Но вкуснее всего были пирожки. Жаль, ты не попробовал! Всем нам досталось по-разному. Олегу — четыре. Тане — два, а мне — один. Я, понятно, плакать не стал. Но ребята сами решили разделить пирожки поровну.

Сначала попробовали делить, как обжоры среднеарифметические. Сложили число пирожков:

4+2+1=7.

А семь разделили на три. Получилось по два и одной трети пирожка на брата. Не очень-то удобно. Во-первых, у нас нет ножа. Да если б и был, всё равно разделить пирожок на три равные доли очень трудно. И потом, как же Пончик? Он хоть и маленький, но ведь и ему есть надо!

Тогда решили вычислить среднее геометрическое.

Сначала число пирожков перемножили:

4 · 2 · 1 = 8.

А потом из восьми извлекли корень третьей степени:

Вот и вышло по два пирожка на душу населения. А один остался для Пончика.

В общем, неплохо провели время. Но мне всё равно досадно. Ведь не из-за пирожков мы сюда пришли, а из-за Чёрной Маски! А о ней пока ни гугу. В следующий раз меня в это бешеное подземелье никакими пирожками не заманишь. Будь здоров.

Сева.

Воздушная монорельсовая дорога

(Таня — Нулику)

Вот, Нулик, наконец наступила и моя очередь писать. Дожидаться пришлось долго, зато есть о чём порассказать. Понимаешь, мы в первый таз побывали на воздушной монорельсовой дороге.

Чтобы тебе зря не ломать голову, скажу сразу: монорельсовая — значит, с одним рельсом. «Монос» — слово греческое и означает «один».

Вообще-то надземные дороги теперь строят всюду. Но эта совсем, совсем особенная. Не знаю только, сумею ли я описать всё как следует. На всякий случай наберись терпения и читай внимательно.

Перейти на страницу:

Все книги серии Карликания

Черная маска из Аль-Джебры
Черная маска из Аль-Джебры

«Чёрная Маска из Аль-Джебры» — продолжение сказки «Три дня в Карликании», вышедшей в 1964 году в издательстве «Детская литература».Действие сказки происходит в соседнем с Карликанией государстве Аль-Джебре.Житель Арифметического государства Нулик случайно очутился у входа в таинственную пещеру. Здесь он увидел странное существо в чёрной маске. Незнакомец сообщает Нулику, что он заколдован и обречён носить маску до тех пор, пока его не расколдуют.Но Нулик ещё слишком мал для такого серьёзного дела. Поэтому он вызывает в Карликанию своих друзей.Ребята попадают в незнакомую им страну Аль-Джебру. Там с ними происходят всевозможные приключения, о которых они рассказывают Нулику в письмах.

Владимир Артурович Левшин , М. Александрова , Эмилия Борисовна Александрова

Детская образовательная литература / Книги Для Детей
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука

Похожие книги

Удивительные истории о существах самых разных
Удивительные истории о существах самых разных

На нашей планете проживает огромное количество видов животных, растений, грибов и бактерий — настолько огромное, что наука до сих пор не сумела их всех подсчитать. И, наверное, долго еще будет подсчитывать. Каждый год биологи обнаруживают то новую обезьяну, то неизвестную ранее пальму, то какой-нибудь микроскопический гриб. Плюс ко всему, множество людей верят, что на планете обитают и ящеры, и огромные мохнатые приматы, и даже драконы. О самых невероятных тайнах живых существ и организмов — тайнах не только реальных, но и придуманных — и рассказывает эта книга.Петр Образцов — писатель, научный журналист, автор многих научно-популярных книг.

Петр Алексеевич Образцов

Детская образовательная литература / Биология, биофизика, биохимия / Биология / Книги Для Детей / Образование и наука