Ну, это я запомнил сразу. Одного только никак не мог понять: при чём здесь разноцветные береты?
— А вот при чём, — сказала мама. — Если вы хотите узнать, сколько раз надо переставить семь Нуликов в разноцветных беретах, чтобы сделать все возможные перестановки, надо вычислить факториал числа семь, то есть перемножить все числа натурального ряда от единицы до семи.
Стали перемножать и получили большущее число:
7!=12·3·4·5·6·7=5040.
Пять тысяч сорок! Пять тысяч сорок перестановок! А мы сделали всего 527. Ужас!..
Хорошо, что в разноцветных беретах явились всего семь Нуликов. А что если бы двадцать семь? Пришлось бы вычислять факториал двадцати семи. Нет уж, дудки! Хотите — считайте сами. А я не буду.
Всего вам хорошего. С нетерпением жду новых сообщений.
Репортаж со стадиона
Внимание, внимание! Говорят все радиостанции Аль-Джебры! Начинаем репортаж с Центрального стадиона. Здесь сейчас будут выступать самые юные гимнасты страны.
Слышите гул приветствий? Это на поле выбегают дошкольники — латинские буковки a
в зелёных костюмах, за ними буковкиСверху нам открывается чудесное зрелище: пёстрый прямоугольник из букв! Но вот грянул оркестр факториалов. Звучит вальс, и прямоугольник приходит в движение. Буквы делают шаг в сторону. Одни вправо, другие влево. Потом они берутся за руки, и вот уже перед нами десятки разноцветных пар:
Зелёное с красным, жёлтое с зелёным, красное с жёлтым…
Юные гимнасты показывают действие, которое называется перемножением одночленов. Разумеется, никаких знаков умножения при этом нет. Каждый младенец в Аль-Джебре знает, что если две буквы стали рядом, значит, они помножены друг на друга.
Не подумайте только, что от перемножения буквы превратились в двучлены. Боже упаси! Это грубая ошибка! Они как были, так и остались одночленами.
Но вот идёт новая перестановка. Теперь буковки объединяются по три:
Легко догадаться, что это тоже произведения и каждое из них опять-таки одночлен.
Умножение одночленов закончилось. Буквы снова заняли первоначальные позиции. Оркестр играет весёлую полечку. На стадионе появляются знаки сложения и вычитания. Плюсы и минусы занимают места между буковками-одночленами:
Вот когда буквы из одночленов превратились в двучлены. Но не успели зрители как следует полюбоваться этой картиной, как буквы образуют уже другие суммы:
Теперь это уже трёхчлены. Жаль, что в упражнениях принимают участие только
Внимание! Начинается новое упражнение. Забавно! Очень забавно! Знаки плюс стали между одинаковыми буквами. Сейчас сложились семь буковок а, и… о чудо! Вместо семи осталась только одна. Остальные шесть исчезли на наших глазах, а вместо них на поле появилось число Семь. Оно встало слева от буквы а, и весь стадион хором прочитал: «Семь а».
Это волшебное алгебраическое упражнение называется приведением подобных. Оно возможно только тогда, когда все слагаемые действительно подобны, то есть совершенно одинаковы. Какая экономия места, времени и чернил! В Аль-Джебре очень любят экономию. В самом деле, к чему писать если можно записать коротко и ясно:
Семёрка немного важничает. Оно и понятно: ведь она одна заменила шесть одинаковых букв и ей присвоено почётное звание числового коэффициента при букве
Ага! Другим буквам это тоже понравилось. Они просят плюсы занять места между ними. И вот число букв стремительно уменьшается. Вместо них на поле появляются числа-коэффициенты. Вместе с оставшимися буквами они образуют одночлены:
Их зорко охраняют рыцари-коэффициенты.
Упражнениям нет конца! Только что на поле образовался многочлен
как мигом произошло приведение подобных и появился верный рыцарь — коэффициент Шесть:
6
Но что это? Оркестр замолкает… Понимаю: сейчас произойдёт перегруппировка и начнётся новое упражнение. В самом деле: минусы и плюсы покидают поле под дружные аплодисменты. Буковки снова образовали пёстрый прямоугольник. Но теперь в первом ряду стоят буквы в зелёном, во втором — в красном, в третьем — в светло-жёлтом. Они повторяют самое первое упражнение — перемножение одночленов. Только теперь все сомножители одинаковые. И опять происходят чудеса. Как только две одинаковые буквы перемножатся, одна из них сейчас же исчезает, а на поле появляется число Два. Буква протягивает руку, и Двойка ловко вскакивает к ней на ладошку: