Читаем Путешествие по Карликании и Аль-Джебре полностью

— В том-то и суть закона Паскаля, что давление на дно не зависит от количества жидкости в сосуде! — воскликнул Пэ. — Оно зависит лишь от высоты сосуда.

— Проверим! — сказал Сева и решительно направился к самому большому сосуду. Он уже собирался нажать кнопку, чтобы налить себе кофе, но директор его остановил:

— Как? Вы хотите выпить сразу два литра? Но ведь это же очень вредно! Из этого сосуда мы отпускаем кофе на дом многосемейным. Прошу вас за столик. Сейчас я подам вам по чашечке кофе и большую вазу с треугольниками. Они тоже приготовлены по рецепту Паскаля.

Вот не, думал, что можно питаться треугольниками! При слове «треугольник» мне сейчас же вспоминаются папины чертёжные принадлежности.

Слава богу, треугольники в кафе «Абракадабра» вовсе не пластмассовые, а вафельные. И с самой разной начинкой: шоколадные, фруктовые, сливочные, ореховые, миндальные. Мы перепробовали все, какие были, и так увлеклись, что не заметили, как кафе заполнилось публикой. Скоро все столики были заняты. К этому времени у нас оставалось всего-навсего три вафли. Все взяли по одной и хотели уже прикончить, но нас остановила Таня.

— Смотрите, — сказала она, — на моём треугольнике какая-то надпись.

Тогда и мы посмотрели и увидели, что на вафлях написано: «Треугольник Паскаля».

— Что-то вроде штампа фабрики, — сообразил Сева. — Как у нас «Красный Октябрь» или «Фабрика имени Бабаева».

— А это тоже «фабрика Бабаева»?

Таня перевернула треугольник другой стороной. Там были выпуклые числа. Мы сличили свои вафли — числа на всех были одинаковые.

Сначала нам показалось, что они расположены беспорядочно. Только слева и справа в каждом ряду обязательно стоит единица. Приглядевшись, мы увидели, что числа определённым образом чередуются. Вот, например, в пятом ряду: 1, 4, 6, 4, 1. В седьмом: 1, 6, 15, 20, 15, 6, 1. Мы заметили также, что, если спускаться по левой стороне треугольника, в первом наклонном столбце написаны единицы, во втором — натуральный ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9… Дальше числа стоят вразброд: 1, 3, 6, 10, 15, 21… А потом и того хуже: 1, 4, 10, 20, 35, 56…

— Одним словом, абракадабра! — проворчал Сева.

— Напрасно думаете, — заметила наша соседка, латинская буква Эс. — В этих числах есть определённый порядок, и разобраться в нём вовсе не трудно.

— Ну, где тут порядок? Где? — горячился Сева.

— Немножко наблюдательности — и вы перестанете спорить. Заметьте, что любое число в этом треугольнике равно сумме двух чисел, стоящих над ним.

— Правда! — сказала Таня. — Число 28 из девятого ряда равно сумме семи и двадцати одного, которые стоят над ним.

— А 126 из десятого ряда равно сумме семидесяти и пятидесяти шести, — сосчитал Сева.

— Вот видите! Никогда не торопитесь с выводами, — сказала Эс. — Часто то, что кажется неразберихой, на самом деле имеет строгий порядок. Надо только его обнаружить. В том-то и задача каждого учёного.

— До чего интересный треугольник придумал Паскаль! — вздохнула Таня.

— О, в этом треугольнике ещё много замечательного. Сложите числа каждого ряда. В первом ряду так и будет единица. Во втором?

— Два.

— В третьем?

— Четыре. В четвёртом — восемь, в пятом — шестнадцать, затем — тридцать два, шестьдесят четыре…

— Слушайте! — закричал я. — Ведь это же разные степени числа два:

20= 1;

21= 2;

22= 4;

23= 8;

24= 16;

25= 32.

Мне показалось, что Эс посмотрела на меня одобрительно.

— Не кажется ли вам, — сказала она, — что все эти степени можно записать одним алгебраическим выражением: 2n-1 — два в степени эн минус единица?

— Отчего же не просто два в степени эн?

— Оттого что эн обозначает порядковый номер строки, а показатель степени здесь всегда на единицу меньше порядкового номера. В первой строке — нуль, во второй — единица, в третьей — два и так далее.

— Ага! — догадалась Таня. — Выходит, сумма чисел, стоящих в десятой строке, будет равна двум в девятой степени, что можно изобразить так: два в степени десять минус единица: 210-1.

— Или два в степени эн минус единица, — победоносно закончил Сева.

— Очень приятно, что вы это поняли, — обрадовалась Эс.

Но Сева сейчас же доказал, что радоваться рано.

— Жаль, что такое удивительное изобретение используется только для приготовления вафель, — заявил он.

Эс даже поперхнулась.

— Что вы такое говорите! Треугольник Паскаля широко применяется в Аль-Джебре. Он блестяще используется при возведении в степень двучленов. Кстати, этим вопросом занимался не только Паскаль, но и его великий современник, сэр Исаак Ньютон. С его формулой, известной под названием бином Ньютона, вы познакомитесь несколько позже. Каждому овощу своё время…

— А! Ньютон! — небрежно отмахнулся Сева. — Это тот самый, который подошёл к нам вместе с Лейбницем на Дороге Светлого Разума. Они там вдвоём что-то такое открыли, а потом разбирались, кто из них первый…

— Это «что-то такое» было началом высшей математики. И называется оно анализом бесконечно малых и бесконечно больших величин.

И Эс, сухо попрощавшись, удалилась.

Сева так смутился, что нам его жалко стало.

Перейти на страницу:

Все книги серии Карликания

Черная маска из Аль-Джебры
Черная маска из Аль-Джебры

«Чёрная Маска из Аль-Джебры» — продолжение сказки «Три дня в Карликании», вышедшей в 1964 году в издательстве «Детская литература».Действие сказки происходит в соседнем с Карликанией государстве Аль-Джебре.Житель Арифметического государства Нулик случайно очутился у входа в таинственную пещеру. Здесь он увидел странное существо в чёрной маске. Незнакомец сообщает Нулику, что он заколдован и обречён носить маску до тех пор, пока его не расколдуют.Но Нулик ещё слишком мал для такого серьёзного дела. Поэтому он вызывает в Карликанию своих друзей.Ребята попадают в незнакомую им страну Аль-Джебру. Там с ними происходят всевозможные приключения, о которых они рассказывают Нулику в письмах.

Владимир Артурович Левшин , М. Александрова , Эмилия Борисовна Александрова

Детская образовательная литература / Книги Для Детей
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука

Похожие книги

Удивительные истории о существах самых разных
Удивительные истории о существах самых разных

На нашей планете проживает огромное количество видов животных, растений, грибов и бактерий — настолько огромное, что наука до сих пор не сумела их всех подсчитать. И, наверное, долго еще будет подсчитывать. Каждый год биологи обнаруживают то новую обезьяну, то неизвестную ранее пальму, то какой-нибудь микроскопический гриб. Плюс ко всему, множество людей верят, что на планете обитают и ящеры, и огромные мохнатые приматы, и даже драконы. О самых невероятных тайнах живых существ и организмов — тайнах не только реальных, но и придуманных — и рассказывает эта книга.Петр Образцов — писатель, научный журналист, автор многих научно-популярных книг.

Петр Алексеевич Образцов

Детская образовательная литература / Биология, биофизика, биохимия / Биология / Книги Для Детей / Образование и наука