Если по-древнерусски число, скажем, 1936 обозначалось как АЦЛS, т. е. 1000+900+30+6 (тысяча-девятьсот-тридцать-шесть), то в системах, где собственные обозначения имелись лишь у узловых чисел, приходилось тратить гораздо больше знаков, но зато и удобнее было считать. Например, по-древнегречески это число выглядело ХРННННДДДГI, т. е. 1000+500 +100+100+100+100+10+10+10+5+1 (у греков, в отличие от нашей системы, в качестве узлового числа выступают еще пятерка и кратные ей числа)[13]
. Такому счету «по узловым числам» соответствует устройство общеизвестного прибора — русских счетов. Примерно так же считают некоторые негритянские племена в Южной Африке. У них для счета нужны три человека. Мимо одного из них проходят один за другим быки, и для каждого быка загибается палец. Как только счетчик загнет все десять пальцев, второй счетчик загибает один палец, обозначив таким образом десятки. Когда же не хватит пальцев и у второго счетчика, вступает в дело третий, специализирующийся на сотнях. На островах Тихого океана используют для этой же цели камешки или куски скорлупы кокосового ореха — маленькие для десятков, большие для сотен.Наша, так называемая позиционная система счисления и записи менее «очевидна» и требует известной условности. Она возникла, по-видимому, в Древней Индии, откуда мы через посредство арабов заимствовали не только самую систему, но и арабские цифры. Причем вот что любопытно: историки математики обнаружили, что у древних индусов еще до появления позиционной записи существовала словесная система обозначения чисел, употреблявшаяся преимущественно в научных трудах. Строго говоря, были даже две системы. Одна сокращенная. В ней каждое число обозначалось названием предмета, который обычно встречается в данном количестве (например, единица обозначалась словом «луна», 2 — «глаза», 5 — «чувства»). И число 125 читалось как «чувства-глаза-луна». Другая была более строгой: в ней существовали специальные слова для всех разрядов вплоть до 1016
, и, скажем, число 1936 читалось по-древнеиндийски «одна тысяча девять сотен три десятка шесть».Легко видеть, что здесь встретились два принципа: принцип «мультипликативности», т. е. представление, скажем, 900 как 9x100, 30 — как 3x10 и т. д., и собственно «позиционный» — принцип линейного расположения цифр, соответствующих последовательным разрядам: 5-2-1 (или, что то же самое, 1-2-5). Наша система нумерации своего рода гибрид двух принципов.
Почему же она, несмотря на меньшую наглядность, вытеснила все прочие системы и единовластно воцарилась в математической теории и практике? Как пишет советский историк математики В. И. Лебедев, «причина довольно простая. Нумерации: словесная, азбучная, римская, клинообразная и т. д. — являются пригодными только для записывания результата исчисления
; наша система способствует с удивительной силой самому выполнению счета. Попробуйте перемножить.DCXXXII
х CCLXXIV
— римские обозначения помогут мало»… Проще с алфавитными системами, но они тоже не слишком удобны. Чтобы перемножить, скажем, 13x18, в алфавитных системах (византийской, славянской) считали так:
13 х 18 = (10 + 3) х (10 + 8) =
= 10 (10 + 8) + 3 (10 + 8) =
= 100 + 80 + 30 + 24 = 234.
Подумайте, сколько вычислений пришлось бы делать, для того чтобы помножить 132 на 186! Причем все промежуточные операции, такие, как З х 10 или сложение 100 + 80 и т. д., делались в уме, без «бумажки». Учитывая, что еще в XVI в. теорема Пифагора, например, называлась «ослиным мостом» и воспринималась как верх математической сложности, легко себе представить, как мучились наши бедные предки с подобными вычислениями!