Читаем Путешествие в страну микробов полностью

Профессора Дюпуи, Перрье и Дюрриё из Института электронной микроскопии в Тулузе (Франция) решили устранить и это препятствие. Поток электронов в обычном электронном микроскопе разгоняется при помощи напряжения порядка 100 000 В. Дюпуи и его коллеги используют напряжение 1 500 000 В, в результате чего скорость электронов достигает 291 000 км в 1 с, то есть почти приближается к скорости света. Для решения этой задачи ученым пришлось преодолеть целый ряд технических трудностей. Необходимо было обеспечить защиту обслуживающего персонала от вредного воздействия рентгеновских лучей, возникающих при попадании электронов на металлические части аппарата, надо было создать электромагнитные линзы, весящие до 700 кг, из которых 100 кг приходится на 29 000 витков медной спирали. Но поскольку при таком высоком напряжении большую опасность представляет еще и влажность, все сооружение необходимо было поместить в металлическую сферу диаметром 24 м. Ускоренные в своем движении электроны проникают не только сквозь тончайший слой воздуха, но и через живые клетки бактерий. Хотя продолжительное действие электронов и наносит им повреждения, а позднее и убивает, тем не менее при наблюдении под микроскопом клетки какое-то время остаются живыми и неизмененными (фото 18).

Описанные методы, как, впрочем, и многие другие, позволяют нам проводить исследования в «субмикромире» клетки и открывать его тайны.

<p>Анатомия бактериальной клетки</p></span><span>

В предыдущей главе мы познакомились с тремя главнейшими типами бактериальных клеток. Одни из них имеют форму шариков, другие — палочек или цилиндриков, а третьи представляют подобие спирали.

Какова же внешняя и внутренняя структура бактериальной клетки? Ее схематическое изображение представлено на рисунке. Как и все клетки, она содержит протоплазму, состоящую из цитоплазмы и ядра (у бактерий чаще говорят об области ядра). Цитоплазму охватывает цитоплазматическая мембрана, к внешней стороне которой примыкает клеточная стенка, определяющая форму клетки (фото 19). При воздействии пенициллина на бактериальные клетки обычно нарушается именно структура их стенок и протопласты или сферопласты оказываются оголенными[5]. У них остается лишь тонкая цитоплазматическая мембрана. С потерей стенки исчезает и первичная форма бактериальной клетки, так как оголенный протопласт принимает форму шара. Большинство палочковидных и спиралевидных бактерий снабжены органами передвижения, которые называются жгутиками. Одна клетка может иметь от одного до тридцати жгутиков. Их число и расположение строго характерны для определенных видов бактерий. Зарождаясь в цитоплазме, они выходят через стенку клетки наружу в виде тонких волосков, диаметр которых не превышает 12 нм. Из клеток ряда бактерий удалось выделить некоторое количество жгутиков, достаточное для их химического анализа. В результате было установлено, что бактериальные жгутики состоят из белков, подобных тем, которые находятся в мышцах.

Клеточная стенка многих бактерий часто покрыта слоем слизи, носящим название капсулы. При наблюдении ультратонких срезов бактериальных клеток в электронном микроскопе было установлено, что ширина клеточной стенки равна 10–20 нм. Специальными методами удалось изолировать отдельные стенки, изучить их строение и подвергнуть химическому анализу, который показал, что в них содержится большое количество белков и жиров.

Уже давно было известно, что в бактериях встречаются соединения, характерные для клеточных ядер (речь о них пойдет в главе 12), но «морфологически дифференцированного ядра», как говорят цитологи, выявить до сих пор не удавалось. Лишь благодаря изучению ультратонких срезов, а также с помощью некоторых других методов удалось доказать присутствие в цитоплазме телец, которые не только своим химическим составом, но и иными особенностями напоминают клеточные ядра. С другой стороны, некоторые свойства отличают их от ядер, известных нам по клеткам ряда микроорганизмов, животных и растений.

Схема строения бактериальной клетки.

В цитоплазме бактерий иногда встречаются и другие образования.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука