Читаем Путеводитель для влюбленных в математику полностью

• Целое число X называется нечетным, если мы можем найти такое целое число a, что X = 2a + 1. Например, 13 – нечетное число, потому что его можно выразить как 2 × 6 + 1.

• Целое число X называется четным, если мы можем найти такое целое число a, что X = 2a. Элегантная формулировка: четное целое число – результат удвоения другого целого числа. Например, 20 четное, потому что 20 = 2 × 10.

После этих определений мы можем перейти к доказательству теоремы о том, что сумма двух нечетных целых чисел – четное число[11].

Доказательство. Пусть X и Y – нечетные целые числа. Это означает, что X = 2a + 1 и Y = 2b + 1, где a и b – целые числа. Сумма X и Y может быть представлена следующим образом:

X + Y = (2a + 1) + (2b + 1) = 2a + 2b + 2 = 2 (a + b + 1).

Итак, X + Y представляет собой удвоенное целое число. Таким образом, X + Y – четное число.

Доказывать теоремы непросто, но это гораздо увлекательнее, чем читать чужие доказательства, потому попробуйте доказать следующее: результат перемножения двух нечетных целых чисел – тоже нечетное число. Попытайтесь справиться с задачей самостоятельно, а потом сверьтесь с доказательством в конце раздела[12].

Другие математические теоремы гораздо интереснее, а их доказательства гораздо сложнее, но цель у них все та же: обосновать математический факт со стопроцентной уверенностью.

Итак:

Теорема – это математическое утверждение, требующее доказательства своей неопровержимой истинности.

Интересные теоремы красивы. Надеюсь, этот «Путеводитель» поможет вам видеть математическую красоту и наслаждаться ею.

Заключительные слова

Какие три слова жаждут услышать математики?

Конечно, нам греет душу фраза: «Я люблю тебя», но в данном случае речь идет о других заветных словах: «Quod erat demonstrandum». В переводе с латинского они означают: «Что и требовалось доказать» – и обычно завершают математическое доказательство. Впрочем, немногие пишут эту фразу целиком, большинство ученых ограничиваются аббревиатурой QED. К сожалению, и она уже вышла из моды, и сейчас в конце доказательства принято использовать символ, например небольшой квадрат: □.


Часть I

Число

Глава 1

Простые числа

Физик Ричард Фейнман[13] верил: если человечество столкнется с опасностью потери всего научного знания, но у него будет возможность передать потомкам всего одну фразу о науке, эта фраза должна описывать, как атомы образуют материю[14]. Продолжим фантазировать в том же духе. Если бы мы могли передать следующему поколению всего одну математическую идею, это, как мне кажется, должен быть ответ на вопрос: как много существует простых чисел?

Целые числа

Математическая мысль начинается со счета. Мы используем для счета натуральные числа: 1, 2, 3 и т. д. Отсутствие объектов для счета – и необходимость подобрать число для этого отсутствия – приводит нас к понятию нуля. Когда мы складываем или умножаем натуральные числа, результат всегда представляет собой другое натуральное число. Но вычитание внушает беспокойство. Все хорошо, когда мы вычитаем три из пяти: 5 – 3, но если мы поступим наоборот, то получится 3 – 5, и результат не будет натуральным числом. Мы восполняем этот недостаток, вводя отрицательные числа: –1, –2, –3 и т. д.

Множество всех натуральных и полученных при их вычитании отрицательных чисел вместе с нулем называют целыми числами. Математики используют стилизованную букву Z, чтобы обозначить все целые числа:

ℤ = {…, –4, –3, –2, –1, 0, 1, 2, 3, 4, …}.

Когда мы делим целые числа друг на друга, возникает загвоздка. В то время как мы можем складывать, перемножать целые числа и вычитать их друг из друга в полной уверенности, что получим целое число, результат деления одного целого числа на другое иногда оказывается целым числом, а иногда и нет.

Возьмем два положительных целых числа а и b. Мы говорим, что а делится на b, если частное a / b – тоже целое число. Мы называем a – делимым, b – делителем.

Например, 24 делится на 6 (потому что частное от деления – целое число), но не на 7 (потому что частное не является целым числом). Всякое положительное целое число делится само на себя: если а – положительное целое число, то частное от а / а равно 1, и это, разумеется, целое число. Также всякое положительное целое число делится на 1, потому что, если а – положительное целое число, результат деления а / 1 равен а.

Положительное целое число называется простым, если у него есть ровно два делителя: 1 и оно само.

Например, 17 – простое число, потому что 1 и 17 – его единственные делители. По той же причине 2 – простое число.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги